Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
In this study, dynamic encryption techniques are explored as an image cipher method to generate S-boxes similar to AES S-boxes with the help of a private key belonging to the user and enable images to be encrypted or decrypted using S-boxes. This study consists of two stages: the dynamic generation of the S-box method and the encryption-decryption method. S-boxes should have a non-linear structure, and for this reason, K/DSA (Knutt Durstenfeld Shuffle Algorithm), which is one of the pseudo-random techniques, is used to generate S-boxes dynamically. The biggest advantage of this approach is the production of the inverted S-box with the S-box. Compared to the methods in the literature, the need to store the S-box is eliminated. Also, the fabr
... Show MoreIn this work a study and calculation of the normal approach between two bodies,
spherical and rough flat surface, had been conducted by the aid of image processing
technique. Four kinds of metals of different work hardening index had been used as a
surface specimens and by capturing images of resolution of 0.006565 mm/pixel a good estimate of the normal approach may be obtained the compression tests had been done in strength of material laboratory in mechanical engineering department, a Monsanto tensometer had been used to conduct the indentation tests. A light section measuring equipment microscope BK 70x50 was used to calculate the surface parameters of the texture profile like standard deviation of asperity peak heights
In this work a study and calculation of the normal approach between two bodies, spherical and rough flat surface, had been conducted by the aid of image processing technique. Four kinds of metals of different work hardening index had been used as a surface specimens and by capturing images of resolution of 0.006565 mm/pixel a good estimate of the normal approach may be obtained the compression tests had been done in strength of material laboratory in mechanical engineering department, a Monsanto tensometer had been used to conduct the indentation tests.
A light section measuring equipment microscope BK 70x50 was used to calculate the surface parameters of the texture profile like standard deviation of asperity peak heights, centre lin
This study investigates the impact of spatial resolution enhancement on supervised classification accuracy using Landsat 9 satellite imagery, achieved through pan-sharpening techniques leveraging Sentinel-2 data. Various methods were employed to synthesize a panchromatic (PAN) band from Sentinel-2 data, including dimension reduction algorithms and weighted averages based on correlation coefficients and standard deviation. Three pan-sharpening algorithms (Gram-Schmidt, Principal Components Analysis, Nearest Neighbour Diffusion) were employed, and their efficacy was assessed using seven fidelity criteria. Classification tasks were performed utilizing Support Vector Machine and Maximum Likelihood algorithms. Results reveal that specifi
... Show MoreThyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreA computational investigation has been carried out on the design and properties of the electrostatic mirror. In this research, we suggest a mathematical expression to represent the axial potential of an electrostatic mirror. The electron beam path under zero magnification condition had been investigated as mirror trajectory with the aid of fourth – order – Runge – Kutta method. The spherical and chromatic aberration coefficients of mirror has computed and normalized in terms of the focal length. The choice of the mirror depends on the operational requirements, i.e. each optical element in optical system has suffer from the chromatic aberration, for this case, it is use to operate the mirror in optical system at various values
... Show MoreOne of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a
... Show MoreA sensitive spectrophotometric method was developed for the estimation of cefdinir (CFD), a cephalosporin species. This study involves two methods, and the first method includes the preparing of azo dye by the reaction of CFD diazonium salt with 4-Tert-Butylphenol (4-TBP) and 2-Naphthol (2-NPT) in alkaline medium, which shows colored dyes measured at λmax 490 and 535 nm, respectively. Beer's law was obeyed along the concentration range of (3-100) μg.ml-1. The limits of detection were 0.246, 0.447 μg.ml-1 and molar absorptivities were 0.6129×104, 0.3361×104 L.mol-1cm-1 for (CFD-4-TBP) and (CFD-2-NPT), respectively. The second method includes preconcentration for cefdinir dyes by using cloud point extraction in the presence of Triton
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show More