Iron–phthalocyanine (FePc) organic photoconductive detector was fabricated using pulsed laser deposition (PLD) technique to work in ultraviolet (UV) and visible regions. The organic semiconductor material (iron phthalocyanine) was deposited on n-type silicon wafer (Si) substrates at different thicknesses (100, 200 and 300) nm. FePc organic photoconductive detector has been improved by two methods: the first is to manufacture the detector on PSi substrates, and the second is by coating the detector with polyamide–nylon polymer to enhance the photoconductivity of the FePc detector. The current–voltage (I–V) characteristics, responsivity, photocurrent gain, response time and the quantum efficiency of the fabricated photoconductive detector were measured. The performance of the fabricated detector was taken under dark and illumination using two types of light sources: UV LED with wavelength (365[Formula: see text]nm), power of (10[Formula: see text]W) and Tungsten lamp with wavelength range between (500–800) nm and the optical power of (250[Formula: see text]W). The photoresponse enhancement was improved by coating the FePc films with 200[Formula: see text]nm of polyamide nylon polymer. This type of coating, which can be considered as a surface treatment, highly increased the photoresponse of the fabricated FePc UV detector. The results show that the responsivity increased four orders of magnitudes more than the responsivity of the uncoated FePc film. The effects of the coated polymers on the responsivity and the response time of the detector were investigated.
Nowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of
... Show MoreA new reversed phase- high performance liquid chromatographic (RP-HPLC) method with Ultraviolet-Visible spectrophotometry has been optimized and validated for the simultaneous extraction and determination of organic acids present in Iraqi calyces of Hibiscus Sabdraffia Linn. The method is based on using ultrasonic bath for extracting organic acids. Limit of detection in µg/ml of Formic acid, Acetic acid, Oxalic acid, Citric acid, Succinic acid, Tartaric acid, and Malic acid 126.8498×10-6, 113.6005×10-6, 97.0513×10-6, 49.7925×10-6, 84.0753×10-6, 92.6551×10-6, and 106.1633×10-6 ,respectively. The concentration of organic acids found in dry spacemen of calyces of Iraqi Hibiscus Sabdraffia Linn. under study: Formic acid, Acetic acid,
... Show MoreIn this research thin films from SnO2 semiconductor have been prepared by using chemical pyrolysis spray method from solution SnCl2.2H2O at 0.125M concentration on glass at substrate temperature (723K ).Annealing was preformed for prepared thin film at (823K) temperature. The structural and sensing properties of SnO2 thin films for CO2 gas was studied before and after annealing ,as well as we studied the effect temperature annealing on grain size for prepared thin films .
Zinc Oxide (ZnO) is probably the most typical II-VI
semiconductor, which exhibits a wide range of nanostructures. In
this paper, polycrystalline ZnO thin films were prepared by chemical
spray pyrolysis technique, the films were deposited onto glass
substrate at 400 °C by using aqueous zinc chloride as a spray
solution of molar concentration of 0.1 M/L.
The crystallographic structure of the prepared film was analyzed
using X-ray diffraction; the result shows that the film was
polycrystalline, the grain size which was calculated at (002) was
27.9 nm. The Hall measurement of the film studied from the
electrical measurements show that the film was n-type. The optical
properties of the film were studied using
A polycrystalline CdSe thin films doped with (5wt%) of Cu was fabricated using vacuum evaporation technique in the substrate temperature range(Ts=RT-250)oC on glass substrates of the thickness(0.8?m). The structure of these films are determined by X-ray diffraction (XRD). The X-ray diffraction studies shows that the structure is polycrystalline with hexagonal structure, and there are strong peaks at the direction (200) at (Ts=RT-150) oC, while at higher substrate temperature(Ts=150-250) oC the structure is single crystal. The optical properties as a function of Ts were studied. The absorption, transmission, and reflection has been studied, The optical energy gap (Eg)increases with increase of substrate temperature from (1.65
... Show MoreIn modern era, which requires the use of networks in the transmission of data across distances, the transport or storage of such data is required to be safe. The protection methods are developed to ensure data security. New schemes are proposed that merge crypto graphical principles with other systems to enhance information security. Chaos maps are one of interesting systems which are merged with cryptography for better encryption performance. Biometrics is considered an effective element in many access security systems. In this paper, two systems which are fingerprint biometrics and chaos logistic map are combined in the encryption of a text message to produce strong cipher that can withstand many types of attacks. The histogram analysis o
... Show More