An optoelectronic flow-through detector for active ingredients determination in pharmaceutical formulations is explained. Two consecutive compact photodetector’s devices operating according to light-emitting diodes-solar cells concept where the LEDs acting as a light source and solar cells for measuring the attenuated light of the incident light at 180˚ have been developed. The turbidimetric detector, fabricated of ten light-emitting diodes and five solar cells only, integrated with a glass flow cell has been easily adapted in flow injection analysis manifold system. For active ingredients determination, the developed detector was successfully utilized for the development and validation of an analytical method for warfarin determination in pure and pharmaceutical preparations. The developed method is based on the forming of a white, turbid product as a result of a reaction between the warfarin and semicarbazide which was used as an oxidizing agent. The developed flow-through detector system is semi mechanized, economic in materials consumption, easy to operate and characterized by excellent analytical results. Both developed analytical devices used in two channels flow injection system allow for turbidimetric measurements of warfarin in 0.9–154 μg ml−1 and 123–1600 μg ml−1 ranges of concentration, with limits of detections 0.73 μg ml−1 and 24.66 μg ml−1 for photodetectors 1& 2 respectively. The turbidity measurement procedure for the current flow system offers to conduct 60 tests per hour of the warfarin which is the most needs of quality control analysis in industrial applications. To ensure the analytical usefulness of the flow system, the warfarin has been analyzed in the real samples with a fully acceptable agreement and a correlation between the results offered by the developed flow system and the official method.
In this research, some robust non-parametric methods were used to estimate the semi-parametric regression model, and then these methods were compared using the MSE comparison criterion, different sample sizes, levels of variance, pollution rates, and three different models were used. These methods are S-LLS S-Estimation -local smoothing, (M-LLS)M- Estimation -local smoothing, (S-NW) S-Estimation-NadaryaWatson Smoothing, and (M-NW) M-Estimation-Nadarya-Watson Smoothing.
The results in the first model proved that the (S-LLS) method was the best in the case of large sample sizes, and small sample sizes showed that the
... Show MoreTransforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr
... Show MoreA modified chemical method was used to prepare titanium dioxide nanoparticles (TiO2 NPs), which were diagnosed by several techniques: X-ray diffraction, Fourier transform infrared, field emission scaning electron microscopy, energy disperse X-ray, and UV-visible spectroscopy, which proved the success of the preparation process at the nanoscale level. Where the titanium oxide particles have an average particle size equal to 6.8 nm, titanium dioxide particles were used in the process of adsorption of Congo red dye from its aqueous solutions using a batch system. The titanium oxide particles gave an adsorption efficiency of Congo red dye up to more than 79 %. The experimental data of the adsorption process were analyzed with kinetic models and
... Show MoreBackground and Aim: due to the rapid growth of data communication and multimedia system applications, security becomes a critical issue in the communication and storage of images. This study aims to improve encryption and decryption for various types of images by decreasing time consumption and strengthening security. Methodology: An algorithm is proposed for encrypting images based on the Carlisle Adams and Stafford Tavares CAST block cipher algorithm with 3D and 2D logistic maps. A chaotic function that increases the randomness in the encrypted data and images, thereby breaking the relation sequence through the encryption procedure, is introduced. The time is decreased by using three secure and private S-Boxes rather than using si
... Show MoreThe influence of an aortic aneurysm on blood flow waveforms is well established, but how to exploit this link for diagnostic purposes still remains challenging. This work uses a combination of experimental and computational modelling to study how aneurysms of various size affect the waveforms. Experimental studies are carried out on fusiform-type aneurysm models, and a comparison of results with those from a one-dimensional fluid–structure interaction model shows close agreement. Further mathematical analysis of these results allows the definition of several indicators that characterize the impact of an aneurysm on waveforms. These indicators are then further studied in a computational model of a systemic blood flow network. This demonstr
... Show MoreFlexible pavements are considered an essential element of transportation infrastructure. So, evaluations of flexible pavement performance are necessary for the proper management of transportation infrastructure. Pavement condition index (PCI) and international roughness index (IRI) are common indices applied to evaluate pavement surface conditions. However, the pavement condition surveys to calculate PCI are costly and time-consuming as compared to IRI. This article focuses on developing regression models that predict PCI from IRI. Eighty-three flexible pavement sections, with section length equal to 250 m, were selected in Al-Diwaniyah, Iraq, to develop PCI-IRI relationships. In terms of the quantity and severity of eac
... Show MoreThe present study focuses on the deformation of neutron-rich nuclei near the neutron drip line. The nuclei of interest include 28O, 42Si, 58Ca, 80Ni, 100Kr, 122Ru, 152Ba, 166Sm, and 176Er. The relativistic Hartree - Bogoliubov (RHB) approach with effective density-dependent point coupling is utilized to investigate the triaxial deformation, and Skyrme - Hartree - Fock + Bardeen - Cooper - Schrieffer is used to analyze the axial deformation. The study aimed to understand the interplay between nuclear forces, particle interactions, and shell structure to gain insights into the unique behavior of neutron-rich nuclei. Despite these nuclei containing magic numbers, their shapes are still affected by the nucleons' collective behavior and
... Show More