Preferred Language
Articles
/
LxdFPo8BVTCNdQwCiGUo
Deep Classifier Structures with Autoencoder for Higher-level Feature Extraction

Scopus Crossref
View Publication
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Applying Ensemble Classifier, K-Nearest Neighbor and Decision Tree for Predicting Oral Reading Rate Levels

For many years, reading rate as word correct per minute (WCPM) has been investigated by many researchers as an indicator of learners’ level of oral reading speed, accuracy, and comprehension. The aim of the study is to predict the levels of WCPM using three machine learning algorithms which are Ensemble Classifier (EC), Decision Tree (DT), and K- Nearest Neighbor (KNN). The data of this study were collected from 100 Kurdish EFL students in the 2nd-year, English language department, at the University of Duhok in 2021. The outcomes showed that the ensemble classifier (EC) obtained the highest accuracy of testing results with a value of 94%. Also, EC recorded the highest precision, recall, and F1 scores with values of 0.92 for

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Mar 16 2022
Journal Name
2022 Muthanna International Conference On Engineering Science And Technology (micest)
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Thu Jun 01 2023
Journal Name
Iraqi Journal Of Physics
Design and Analysis of the Hexagonal-Shaped Antenna with Multi-Band Feature for WLAN, WiMAX, and LTE Applications

Developing and researching antenna designs are analogous to excavating in an undiscovered mine. This paper proposes a multi-band antenna with a new hexagonal ring shape, theoretically designed, developed, and analyzed using a CST before being manufactured. The antenna has undergone six changes to provide the best performance. The results of the surface current distribution and the electric field distribution on the surface of the hexagonal patch were theoretically analyzed and studied. The sequential approach taken to determine the most effective design is logical, and prevents deviation from the work direction. After comparing the six theoretical results, the fifth model proved to be the best for making a prototype. Measured results rep

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Sequential feature selection for heart disease detection using random forest

Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential f

... Show More
Scopus (1)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jan 01 2017
Journal Name
Ieee Access
Scopus (50)
Crossref (53)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 18 2022
Journal Name
Iraqi Journal Of Science
Diagnosis the Breast Cancer using Bayesian Rough Set Classifier

Breast cancer was one of the most common reasons for death among the women in the world. Limited awareness of the seriousness of this disease, shortage number of specialists in hospitals and waiting the diagnostic for a long period time that might increase the probability of expansion the injury cases. Consequently, various machine learning techniques have been formulated to decrease the time taken of decision making for diagnoses the breast cancer and that might minimize the mortality rate. The proposed system consists of two phases. Firstly, data pre-processing (data cleaning, selection) of the data mining are used in the breast cancer dataset taken from the University of California, Irvine machine learning repository in this stage we

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 22 2023
Journal Name
Iraqi Journal Of Science
A Hybrid Estimation System for Medical Diagnosis using Modified Full Bayesian Classifier and Artificial Bee Colony

This paper presents a hybrid approach called Modified Full Bayesian Classifier (M-FBC) and Artificial Bee Colony (MFBC-ABC) for using it to medical diagnosis support system. The datasets are taken from Iraqi hospitals, these are for the heart diseases and the nervous system diseases. The M-FBC is depended on common structure known as naïve Bayes. The structure for network is represented by D-separated for structure's variables. Each variable has Condition Probability Tables (CPTs) and each table for disease has Probability. The ABC is easy technique for implementation, has fewer control parameters and it could be easier than other swarm optimization algorithms, so that hybrid with other algorithms to reach the optimal structure. In the

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
Scopus (2)
Scopus Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes On Data Engineering And Communications Technologies
Scopus Crossref
View Publication
Publication Date
Wed Dec 30 2015
Journal Name
Al-kindy College Medical Journal
Possibility of glucose level assessment using the blood of gingival probing and dental socket after tooth extraction

Background: The association between diabetes and inflammatory dental diseases had been studied extensively for more than 50 years. A large evidence base suggests that diabetes is associated with an increased prevalence, extent and severity of gingivitis and periodontitis and loss of teeth. Many patients do not aware that they are diabetic.Objectives:The aim of the current study was to assess a fast, non-invasive, safe procedure to screen for diabetes and its severity in dental clinics and to assess the change in blood glucose level before and after tooth extraction during periodontalResults: there were no significant differences between the blood samples collected before tooth extraction from finger puncture method (FPB) and the gingival

... Show More
View Publication Preview PDF