Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreThis study aimed to recognize the Abilities Musical level and its relation with the for positive thinking, The present study relied on the analytical correlational descriptive approach The study population consisted of 167 female students who participated in musical activities, among the students of Maysaloon Elementary School for Girls affiliated to the Directorate of Education for the Bani Ubaid Brigade in Irbid Governorate. While the sample of this study consisted of (65) female students; , from level: intermediate .
The correlative analytic descriptive method was used, Was applied to the study sample Seachor tests of musical capabilities (the abbreviated image), which was codified by the Arabic (Sadiq (2001), the scale of posi
... Show More
Background: Double diabetes is the term used to describe situations in which a patient exhibits characteristics that are a combination of type 1 and type 2 Diabetes Mellitus. Metalloendopeptidase or Neprilysin is membrane-bound metallopeptidase. It has a wide range of physiological function and a variety of substrates. It has a significant impact on the proteolytic functions of the kidney, cardiovascular health, immunological response, cell proliferation, and fetal development. It also has a preventative effect on the onset of type 2 diabetes, obesity, and cancer. Objective: The study aims to assess the level of MEP in patients wi |
Background: Coronavirus disease 2019 (COVID-19) is an emerging zoonotic disease caused by the new respiratory virus SARS-CoV2. It has a tropism in the lung tissues where excess target receptors exist. Periostin plays a role in subepithelial fibrosis associated with bronchial asthma. Since the Coronavirus's target is the human respiratory system, Periostin has been recently described as a valuable new biomarker in the diagnosis and evaluation of disease in patients with COVID-19 lung involvement. Objectives: To assess the level of Periostin in the serum of COVID-19 patients and to correlate its role in disease severity and prognosis. Subjects and Methods: Periostin serum levels were measured for 63 patients attending three main COVID
... Show MoreIn latest decades, genetic methods have developed into a potent tool in a number of life-attaching applications. In research looking at demographic genetic diversity, QTL detection, marker-assisted selection, and food traceability, DNA-based technologies like PCR are being employed more and more. These approaches call for extraction procedures that provide efficient nucleic acid extraction and the elimination of PCR inhibitors. The first and most important stage in molecular biology is the extraction of DNA from cells. For a molecular scientist, the high quality and integrity of the isolated DNA as well as the extraction method's ease of use and affordability are crucial factors. The present study was designed to establish a simple, fast
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More