The petrophysical analysis is very important to understand the factors controlling the reservoir quality and production wells. In the current study, the petrophysical evaluation was accomplished to hydrocarbon assessment based on well log data of four wells of Early Cretaceous carbonate reservoir Yamama Formation in Abu-Amood oil field in the southern part of Iraq. The available well logs such as sonic, density, neutron, gamma ray, SP, and resistivity logs for wells AAm-1, AAm-2, AAm-3, and AAm-5 were used to delineate the reservoir characteristics of the Yamama Formation. Lithologic and mineralogic studies were performed using porosity logs combination cross plots such as density vs. neutron cross plot and M-N mineralogy plot. These cross plots show that the Yamama Formation consists mainly of limestone and the essential mineral components are dominantly calcite with small amounts of dolomite. The petrophysical characteristics such as porosity, water and hydrocarbon saturation and bulk water volume were determined and interpreted using Techlog software to carried out and building the full computer processed interpretation for reservoir properties. Based on the petrophysical properties of studied wells, the Yamama Formation is divided into six units; (YB-1, YB-2, YB-3, YC-1, YC-2 and YC-3) separated by dense non porous units (Barrier beds). The units (YB-1, YB-2, YC-2 and YC-3) represent the most important reservoir units and oil-bearing zones because these reservoir units are characterized by good petrophysical properties due to high porosity and low to moderate water saturation. The other units are not reservoirs and not oil-bearing units due to low porosity and high-water saturation.
Rock failure during drilling is an important problem to be solved in petroleum technology. one of the most causes of rock failure is shale chemical interaction with drilling fluids. This interaction is changing the shale strength as well as its pore pressure relatively near the wellbore wall. In several oilfields in southern Iraq, drilling through the Tanuma formation is known as the most challenging operation due to its unstable behavior. Understanding the chemical reactions between shale and drilling fluid is determined by examining the features of shale and its behavior with drilling mud. Chemical interactions must be mitigated by the selection of suitable drilling mud with effective chemical additives. This study is describing t
... Show MoreA total of 54 abu mullet Planiliza abu (Heckel, 1843) were collected from two stations (north and south stations) along the Euphrates River near Samawa City, Al-Muthanna province and were examined during the period from October 2016 till September 2017 for parasites. Six out of 35 examined fishes from the north station (17.1%) and one out of 19 examined fishes (5.3%) from south station were infected with the microcotylid Solostamenides paucitesticulatus Kritsky & Öktener, 2015. The parasite was illustrated and described, and it is considered as a new record for the parasitic fauna of fishes of Iraq.
Mishrif Formation was deposited during The Cenomanian-Early Turonian, which has been studied in selected Tuba and Zubair OilFields, these wells (TU-5, TU-24, TU-40, ZB-41, ZB-42, and ZB-46) are located within Mesopotamian basin at southern Iraq and considered as a major carbonate reservoir in Iraq and the Arabian Gulf. The palaeontological investigations mainly depending on benthonic foraminifera of the studied wells of Tuba and Zubair Oilfields in Mishrif Formation, twenty-four species belonging to fourteen genera are recognized of benthonic foraminifera, which has been recognized through this study, especially benthonic foraminiferal, indicating four zones as follows:
The objective of this study is to verify the overall performance and evaluate the wastewater quality of the wastewater treatment plant at the Abu Ghraib Dairy Factory and compare the results with the Iraqi Quality Standards (IQS) for effluent disposal and with the national determinants of treated water use. Agricultural irrigation wastewater, which included daily assessment records of the main parameters affecting wastewater [five-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total dissolved solids (T.D.S), total suspended solids (TSS), phosphate (PO4), nitrate (NO3), hydrogen ion concentration (pH)] obtained from the quality control department of Abu Ghraib dairy plant registered from January 2017 to December 2020. Th
... Show MoreA 3D geological model is an essential step to reveal reservoir heterogeneity and reservoir properties distribution. In the present study, a three-dimensional geological model for the Mishrif reservoir was built based on data obtained from seven wells and core data. The methodology includes building a 3D grid and populating it with petrophysical properties such as (facies, porosity, water saturation, and net to gross ratio). The structural model was built based on a base contour map obtained from 2D seismic interpretation along with well tops from seven wells. A simple grid method was used to build the structural framework with 234x278x91 grid cells in the X, Y, and Z directions, respectively, with lengths equal to 150 meters. The to
... Show MoreThe most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishri
... Show MoreThe importance of kick tolerance in well operations has recently increased due to its implications in well design, in drilling and well control. To study a simple method for the application of kick tolerance concept in an effective way on the basis of field data, this research purpose is to improve knowledge about Kick Tolerance and represents a technical basis for the discussion on revision of standard procedure.
The objective of this work is to review and to present a methodology of determination the kick tolerance parameters using the circulation kicks tolerance concepts.
The proposed method allows to know, to evaluate and to analyze the kick tolerance problem in order to make the drilling exe
... Show MoreThe importance of kick tolerance in well operations has recently increased due to its implications in well design, in drilling and well control. To study a simple method for the application of kick tolerance concept in an effective way on the basis of field data, this research purpose is to improve knowledge about Kick Tolerance and represents a technical basis for the discussion on revision of standard procedure. The objective of this work is to review and to present a methodology of determination the kick tolerance parameters using the circulation kicks tolerance concepts. The proposed method allows to know, to evaluate and to analyze the kick tolerance problem in order to make the drilling execution safer and more economical by reducin
... Show MoreThe possibility of using the magnetic field technique in prevention of forming scales in heat exchangers pipes using
hard water in heat transfer processes, also the studying the effective and controllable parameters on the mechanism of
scale formation.
The new designed heat exchanger experimental system was used after carrying out the basic process designs of the
system. This system was used to study the effect of the temperature (40-90 °C) and water flow rate (0.6-1.2 L/min) on
the total hardness with time as a function of precipitation of hardness salts from water and scale formation.
Different magnetic field designs in the heat exchanger experimental system were used to study the effect of magnetic
field design a