FLI1 is a member of ETS family of transcription factors that regulate a variety of normal biologic activities including cell proliferation, differentiation, and apoptosis. The expression of FLI1 and its correlation with well-known breast cancer prognostic markers (ER, PR and HER2) was determined in primary breast tumors as well as four breast cancer lines including: MCF-7, T47D, MDA-MB-231 and MDA-MB-468 using RT-qPCR with either 18S rRNA or ACTB (β-actin) for normalization of data. FLI1 mRNA level was decreased in the breast cancer cell lines under study compared to the normal breast tissue; however, Jurkat cells, which were used as a positive control, showed overexpression compared to the normal breast. Regarding primary breast carcinomas, FLI1 is significantly under expressed in all of the stages of breast cancer upon using 18S as an internal control. This FLI1 expression was correlated with ER, PR and HER2 status. In conclusion FLI1 can be exploited as a preliminary marker that can predict the status of ER, PR and HER2 in primary breast tumors.
Multiple single-nucleotide polymorphisms (SNPs) located in the intergenic region between estrogen receptor 1 and
To assess the potential association between rs3757318 SNP and breast cancer pathogenicity, specifically in relation to serum vitam
Production and characterization of methionine γ- lyase from Pseudomonas putida and its effect on cancer cell lines
In this research, silver nanoparticles (AgNPs) were manufactured using aqueous extract of mushroom Pleurotus ostreatus. Anticancer potential of AgNPs was investigated versus human breast cancer cell line (MCF-7). Cytotoxic response was assessed by MTT assay. AgNPs showed inhibition effect at the following concentrations 12.5, 25, 50, 100 and 200 µg/ml versus MCF-7 cell line, and all treatments had a positive result. The MCF-7 cells were inhibited up to 85.14 % at the concentration 200 μg/ml of AgNPs which reduced cells viability to 14.86%, while 12.5 μg/ml of AgNPs caused 24.23% cells inhibition with reduction of cells viability to 75.77%.
Angiogenesis is important for tissue during normal physiological processes as well as in a number of diseases, including cancer. Drug resistance is one of the largest difficulties to antiangiogenesis therapy. Due to their lower cytotoxicity and stronger pharmacological advantage, phytochemical anticancer medications have a number of advantages over chemical chemotherapeutic drugs. In the current study, the effectiveness of AuNPs, AuNPs-GAL, and free galangin as an antiangiogenesis agent was evaluated. Different physicochemical and molecular approaches have been used including the characterization, cytotoxicity, scratch wound healing assay, and gene expression of VEGF and ERKI in MCF-7 and MDA-MB-231 human breast cancer cell line. Re
... Show MoreBreast cancer (BC) is the most common malignant tumor in women and the leading cause of cancer deaths worldwide. This work was conducted to estimate the roles of oxidative stress, vitamin B12, homocysteine (HCY), and DNA methylation in BC disease progression. Sixty BC patients (age range 33–80 years) and 30 healthy controls were recruited for this study. Patients with BC were split to group 1 consisted of stage II BC women (low level), and group 2 consisted of patients in stages III and IV (high level). Malondialdehyde (MDA), glutathione peroxidase 3 (GPX3), HCY, and vitamin B12 levels in the study groups were measured. Also, the 5-methylcytosine (5mC) global DNA methylation levels were evaluated. The results showed a significant
... Show More<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show MoreObjective: We hypothesized that attacking cancer cells by combining various modes of action can hinder them from taking the chance to evolve resistance to treatment. Incorporation of photodynamic therapy (PDT) with oncolytic virotherapy might be a promising dual approach to cancer treatment. Methods: NDV AMHA1 strain as virotherapy in integration with aminolaevulinic acid (ALA) using low power He-Ne laser as PDT in the existing work was examined against breast cancer cells derived from Iraqi cancer patients named (AMJ13). This combination was evaluated using Chou–Talalay analysis. Results: The results showed an increased killing rate when using both 0.01 and 0.1 Multiplicity of infection (MOI) of the virus when combined with a dose of 617
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show More