Preferred Language
Articles
/
LxbP4YgBVTCNdQwCNoTK
IDENTIFICATION OF HARD TICKS FROM BUFFALO BUBALUS BUBALIS (LINNAEUS, 1758) IN IRAQ
...Show More Authors

Ticks (Acari: Ixodidae) are ectoparasites that infest livestock in every geographic region of the world and are vectors of several viral, bacterial, and protozoan pathogens to both animals and humans. There is little information is available is about tick presence in Buffalo Bubalus bubalis (Linnaeus, 1758) (Artiodactyla, Bovidae) in Iraq. The current study determined the species of ticks parasitizing Buffalo in some central and southern regions included: Baghdad (Al Fathelia), Karbala (Al-Hussainia), Wasit (Kut and Al-Suwairah), Al-Qadisia (Al- Diwaniyah, Al- Saniya, Al-Mihnawea, and Afak), Thi Qar (Al-Nasiriyah and Al-chibayish), Missan (Amara and Qalaat Salih) and Basrah (Al-Haretha, Al-Madena and Al-Deer). A total of 150 Buffalo were examined for ixodid ticks with an infestation rate 66.66%. A total of 172 Specimens of hard ticks were isolated including 104 (58.4%) males and 68 (39.53%) females. The current results revealed to eight species of ixodid ticks belong to the genus Hyalomma as follow: H. truncatum Koch,1844 (50.66%), H. excavatum Koch,1844 (24%), H. anatolicum Koch, 1844 (16%), H. marginatum Koch,1844 (8%), H. impeltatum Schulze & Schlottke, 1930 (8%), H. rufipes Koch,1844 (5.33%), H. scupense Schulze, 1919 (4%), H. dromedarii Koch,1844 (2.66%) respectively. The prevalence of these species in buffaloes was also discussed with previous studies in Iraq and the worldwide. As the current results suggested that buffaloes are considered a new host for three species of them in Iraq the following are: H. truncatum, H. impeltatum, and H. rufipes.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Proposed Hybrid Sparse Adaptive Algorithms for System Identification
...Show More Authors

Abstract 

For sparse system identification,recent suggested algorithms are  -norm Least Mean Square (  -LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named  -ZA-LMS, 

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
2019 2nd International Conference On Engineering Technology And Its Applications (iiceta)
Human Gait Identification System Based on Average Silhouette
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Tools for Drought Identification and Assessment: A Review
...Show More Authors

Drought is a natural phenomenon in many arid, semi-arid, or wet regions. This showed that no region worldwide is excluded from the occurrence of drought. Extreme droughts were caused by global weather warming and climate change. Therefore, it is essential to review the studies conducted on drought to use the recommendations made by the researchers on drought.  The drought was classified into meteorological, agricultural, hydrological, and economic-social. In addition, researchers described the severity of the drought by using various indices which required different input data.  The indices used by various researchers were the Joint Deficit Index (JDI), Effective Drought Index (EDI), Streamflow Drought Index (SDI), Sta

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Comparative analysis of deep learning techniques for lung cancer identification
...Show More Authors

One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Sep 07 2008
Journal Name
Baghdad Science Journal
Isolation and identification of fungi which associated with animal's leather
...Show More Authors

The study included the investigation of fungi which associated with heavy animal's leather (Cows and Buffalos) and light (Sheep’s and Goats )through different processing stages (raw hides ,dehairing ,pickling,chrome tanned and stainning or finished stages)there were 10 genera and 25 species in addition to sterile fungi associated with animal leathers which included Alternaria ,Aspergillus,Cladosporium,Fusarium, Mucor , Penicillium , Rhizopus , and Trichoderma .Aspergillus and Penicillium have observed in all leather samples and different processing stages, and that the first time isolate two genera Helminthosporium , Stemphylium form leather for staining stage.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
Molecular Identification of Aspergillus fumigatus Using ISSR and RAPD Markers
...Show More Authors

The aim of this stud to isolate and identified of A. fumigatus from different sources and study the genetic diversity among these isolates by using RAPD and ISSR markers.Collected 20 samples from 7samples were isolated A. fumigatusisolates were characterized depending on its morphological, then extracted DNA from its.RAPD markersrandomly bandingwith sitesof genome more than ISSR markers where the primer OPN-07 achieved discriminative power (19.1) and 43 bands, while ISSR6 achieved discriminative power (17.1) with 32 bands.ISSR were more efficiency in specific binding then RAPD, ISSR primers has great a binding to production unique band, when 9 primers from 01 primers, ISSR9 was produce (5) unique bands, while RAPD markers was low ability

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 30 2024
Journal Name
Iraqi Journal Of Science
Isolation and Identification of Enterococcus spp. Resistant to Macrolides Antibiotics
...Show More Authors

Gram-positive enterococciare opportunistic and resistant to many antibiotics. This study aimed to investigate the presence of Enterococcus spp. in our community and whether these isolates are resistant to the macrolides class of antibiotics. Fifty isolates from 112 clinical samples were recognized as Enterococcus spp. and confirmed using Vitek-2 system. The current study found that 50/112 (44.6%) represented the total isolates, 38/50 (76%) of which were Enterococcus faecalis, while 12/50 (24%) were Enterococcus faecium, twenty (40%) isolates from root canals and 30 (60%) isolates from urine were isolated. The sensitivity of the enterococcal isolates to various macrolides (erythromycin, azithromycin and clarithromycin) antibiotics wa

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
Molecular identification of dermatophytes by arbitrarily primed polymerase chain reaction
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Jan 01 2017
Journal Name
The Iraqi Journal Of Agricultural Science 48 (5), 1197-1205‏
Sex identification of date palm by using dna molecular markers
...Show More Authors

Publication Date
Mon Jan 01 2024
Journal Name
Communications In Computer And Information Science
Automatic Identification of Ear Patterns Based on Convolutional Neural Network
...Show More Authors

Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in

... Show More
View Publication
Scopus Crossref