Hematological malignancies remain one of the leading causes of death worldwide despite advances in cancer therapeutics. Newcastle disease virus (NDV) is a member of Paramyxoviridae that elicits considerable interest as an anticancer agent because it can replicate up to 10 000 times faster in human cancer cells than in most normal cancer cells. Several NDV strains reportedly induce the cytolysis of cancerous cell lines. The attenuated Iraqi strain (AMHA1) of NDV is a novel oncolytic agent with promising antitumor characteristics, including apoptosis induction. This study aimed to evaluate the ability of the AMHA1 NDV strain to induce apoptotic cell death in hematological tumors through caspase-dependent or independent apoptotic pathways. The cytolytic effects of AMHA1 NDV strains of different multiplicity of infection (MOIs) (20, 15,10, 5, 3, 1, 0.5, and 0.1 )and exposure for all hematological malignancy cell lines (human non-Hodgkin lymphoma SR and human multiple myeloma (COLO 677) and human monocytic leukemia THP1) have been determined through a microtetrazolium (MTT) assay. Propidium iodide and acridine orange (AO/PI) double staining were used to examine the ability of attenuated NDV strain to induce apoptosis in infected cells under a fluorescence microscope and to quantify the percentage of apoptosis induction. Quantitative immunocytochemistry assay was further used to study the caspase-dependent and independent protein expression levels in infected and control cells. Cells treated with NDV strains showed a higher cell-death percentage than untreated cells as quantified by the MTT assay. AO/PI results revealed that NDV exerted a powerful and significant effect on apoptosis induction (P<0.0001) in the human cancer cell lines tested in comparison with control cells. Immunocytochemistry in AMHA1 NDVinfected human hematological cell lines revealed a remarkable increase in the expression of caspase 8, 9 (dependent pathway), apoptosis-inducing factor, and endonuclease G (independent pathway) in comparison with untreated cells. This study demonstrated the role of the Iraqi NDV strain in inducing apoptosis through dependent and independent pathways in cancer cells and thus its high potential as an antitumor agent
The modern and contemporary history of Libya has attracted the attention of researchers during the nineties of the last century and beyond.
The subject of ((Jewish activity in Libya 1911 AD - 1951 AD)), and the nature of follow - up economic and social activities and political participation has remained poor in terms of study and follow - up, because of the scarcity of sources, especially documentary ones. The research will reveal within its axes the most important of these activities.
This study including synthesis of some new Schiff bases compounds [1‐6] from the reaction of Sulfamethoxazole drug with some aromatic aldehydes in classical Schiff base method then treatment Schiff bases with succinic anhydride to get oxazepines rings [7-11]These derivatives were characterized by melting point, FT‐IR, 1H NMR and mass spectra. Some of synthesized compounds were evaluated in vitro for their antibacterial activities against three kinds of pathogenic strains Staphylococcus aureus, Escherichia coli
Copper is a cheaper alternative to various noble metals with a range of potential applications in the field of nanoscience and nanotechnology. However, copper nanoparticles have major limitations, which include rapid oxidation on exposure to air. Therefore, alternative pathways have been developed to synthesize metal nanoparticles in the presence of polymers and surfactants as stabilizers, and to form coatings on the surface of nanoparticles. These surfactants and polymeric ligands are made from petrochemicals which are non- renewable. As fossil resources are limited, finding renewable and biodegradable alternative is promising.The study aimed at preparing, characterizing and evaluating the antibacterial properties of copper nanoparticle
... Show MoreThe aim of study to evaluated cinnamic acid and its activity on complete blood count(RBC,WBC,HG,HCV,MCH,MCHC and Plat.)and removed the cytoxan damage which caused bone marrow failure and leukemia and other that due to linked the cytoxan in 7- nitrogen of guanine based of DNA that lead to dead cells. Two concentration from pure cinnamic acid (5.6, 2.8 mg ? mice weight) in first step to choice the perfect concentration in comparison with each negative control ,positive control of cytoxan and the comparison group represent vitamin C. The second step to understand cinnamic acid mechanism activity towards cytoxan by used pre- cytoxan and post – cytoxan in interaction with perfect concentration of cinnamic acid dose (2.8 mg ? mice we
... Show More