In this work, we calculate and analyze the photon emission from quark and anti-quark interaction during annihilation process using simple model depending on phenomenology of quantum chromodynamic theory (QCD). The parameters, which include the running strength coupling, temperature of the system and the critical temperature, carry information regarding photon emission and have a significant impact on the photons yield. The emission of photon from strange interaction with anti-strange is large sensitive to decreases or increases there running strength coupling. The photons emission increases with decreases running strength coupling and vice versa. We introduce the influence of critical temperature on the photon emission rate in order to facilitate its further applied in photon emission spectrum. Photon emission was increased with large critical temperature MeV comparing with photons emission at critical temperature MeV. We analyze and discuss the sensitive of the emission of photon to photons energy . It increases with decreased photons energy and vice versa. However, the photons emission increases with increases thermal energy of system T = 170 MeV to 270 Mev. It is implied that strength coupling, critical temperature and photons energy can be as important as thermal energy of system for emission of photon.
The current study aims to identify soil pollutants from heavy metals The study utilized 40 topsoil (5 cm) samples, which adapted and divided into seven regions lies in Baghdad governorate, included (Al-Husainya,(Hs) Al-Doura (Do), Sharie Al-Matar (SM), Al-Waziria (Wz), Nharawan (Nh), Abu Ghraib (Abu) and Al-Mahmoodyia (Mh)). Spatial distribution maps of Nickel (Ni), Manganese (Mn), Lead (Pb) and Zinc (Zn) were created for Baghdad city using Geographic Information Systems (GIS). The concentrations of four heavy metals in the soil of different area of Baghdad were measured and observed using XRF instrument. The result found highest values of Pb and Zn at the middle of the Baghdad in (Wz
Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo
This paper presents an experimental study of cooling photovoltaic (PV) panels using evaporative cooling. Underground (geothermal energy) water used to extract heat from it during cooling and cleaning of PV panels. An experimental test rig was constructed and tested under hot and dusty climate conditions in Baghdad. An active cooling system was used with auxiliary an underground water tank to provide cold water as a coolant over both PV surfaces to reduce its temperature. The cellulose pad has been arranged on the back surface and sprays cooling on the front side. Two identical PV panels modules used: without cooling and evaporative water cooling. The experiments are comprised of four cases: Case (I): backside cooling, Ca
... Show MoreSorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.
Gypseous soils are spread in several regions in the world including Iraq, where it covers more than 28.6% [1] of the surface region of the country. This soil, with high gypsum content causes different problems in construction and strategic projects. As a result of water flow through the soil mass, permeability and chemical arrangement of these soils vary over time due to the solubility and leaching of gypsum. In this study the soil of 36% gypsum content, is taken from one location about 100 km (62 mi) southwest of Baghdad, where the sample is taken from depth (0.5 - 1) m below the natural ground surface and mixed with (3%, 6%, 9%) of Copolymer and Styrene-butadiene Rubber to improve t