A new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17- tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2 : 3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These studies revealed tetrahedral geometries about Mn, Co, and Zn atoms. However, square planar geometries have been suggested for NiII and CuII complexes. Biological activity of the ligand and its metal complexes against Gram positive bacterial strain Staphylococcus aureus and Gram negative bacteria Escherichia coli revealed that the metal complexes become more potentially resistive to the microbial activities as compared to the free ligand. However, these metal complexes do not exhibit any effects on the activity of Pseudomonas aeruginosa bacteria. There is therefore no inhibition zone.
Abstract In the current contribution, a novel binuclear nickel(II) and zinc(II) complexes were prepared from a hexadentate ligand prepared via condensation of 3,3'-Bipyridine-6,6'-dicarbaldehyde , 2-amino-5-chlorobenzaldehyde and 2-Aminophenol .The symmetric ligand (H2DTPE) and its metal complexes were illustrated utilizing various techniques of physicochemical containing magnetic moment, analytical analysis and spectroscopy of mass, IR, 13C and 1H NMR, TGA and UV-Vis. The particles of MO Nanoscale were created from the labeled complex applying the ways of pyrolysis and utilizing methods of XRD, FT-IR, and FE-SEM, that specified close compatibility with the typical pattern for nanoparticles of NiO, ZnO and appeared the reasonable size in
... Show MoreCo+2, Ni+2, Cu+2 as well Zn+2 compounds mixed ligand from 8-hydroxyquinoline(8-HQ) also tributylphosphine (PBu3) have been attended at aquatic ethyl alcohol for (1:2:2) (M:8-HQ:PBu3). Produced complexes have been identified by utilizing atomic absorption flame, FT-IR as well UV-Vis spectrum manners also magnetic susceptibility as well as conductivity methods. At addendum antibacterial efficiency from the ligands as well complexes oboist three species about bacteria have been as well examined. Ligands and their complexes show good bacterial efficiencies. Of the gained datum the octahedral geometry was proposed into whole prepared complexes
A new derivatives of Schiff bases connected with 5H-thiazolo[3,4-b][1,3,4]thiadiazole ring 5a-c were prepared via many reactions starting by treating 1,4-phenylene diamine 1 with chloroacetylchloride to prepared compound 2, then reaction with p-hydroxybenzaldehyde to synthesize compound 3 then, this was reacted with thioglycolic acid and thiosemicarazide to giveN,N-(1.4-phenylene)bis(2-(4-(2-amino-5Hthiazolo[4,3-b][1,3,4]thiadiazol-5-yl)phenoxy)acetamide) 4. Compound 4 was treated with different aromatic aldehydes to give a new derivatives of Schiff bases containing 5H-thiazolo[3,4-b][1,3,4]thiadiazole ring 5a-c. The synthesized compounds were characterized using FTIR spectrophotometer and 1H NMR spectroscopy and the biological activity of
... Show MoreIn this study a new ligand ,(potassium 2-carbomethoxy amino-5-trithiocarbonate 1,3,4-thiadiazole) (L) has been prepared from 2-carbomethoxy amino-5-mercapto 1,3,4-thiadiazole with CS2 in alkali media . The product has been isolated and characterized by appropriate physical measurements, vibrational and electronic spectroscopy. The ligand was used to prepare a number of complexes with some metal ions Co(II), Ni(II) and Cu(II). These complexes have been characterized by FT-IR, UV-Vis spectra, molar conductivity, magnetic susceptibility, melting points and atomic absorption measurements. The nickel and copper complexes have an octahedral geometry while cobalt complex has a tetrahedral geometry. The nature of bonding between the metal ion
... Show MoreMetal complexes chrome(III), manganese(II), iron(III), cobalt(II), nickel(II), cupper(II) and zinc(II) with diazonium of 3-amino-2-chloropyridine of general formula [2-Cl-C5H3N≡N]n[MXm], where n=2 or 3 for divalent and trivalent metal, m= 4 or 6 were synthesized. The complexes have been characterized by flame atomic absorption, (C.H.N), molar conductance, magnetic susceptibility UV-vis spectra, infrared spectra,1H-NMR spectroscopy and thermo gravimetric analysis (TGA and DTA). The measurements showed that the divalent metal ion complexes (M2+) have (1:2) M:L ratio with tetrahedral geometry around metal ions while the trivalent metal ions (M3+) formed (1:3) m
... Show MoreNew Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin- 2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment me
... Show MoreMixed ligand metal complexes of CrIII, FeIII,II, NiII and CuII have been synthesized using 5-chlorosalicylic acid (5-CSA) as a primary ligand and L-Valine (L-Val) as secondary ligand. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements and spectral studies. The electrical conductance studies of the complexes indicate their electrolytic nature. Magnetic susceptibility measurements revealed paramagnetic nature of the all complexes. Bonding of the metal ion through –OHand –COOgroups of bidentate to the 5-chlorosalicylic acid and through –NH2 and –COOgroups of bidentate to the L-valine by FT-IR studies . The agar diffusion method has been used to study the antib
... Show MoreMixed ligand metal complexes of CrIII, FeIII,II, NiII and CuII have been synthesized using 5-chlorosalicylic acid (5-CSA) as a primary ligand and L-Valine (L-Val) as secondary ligand. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements and spectral studies. The electrical conductance studies of the complexes indicate their electrolytic nature. Magnetic susceptibility measurements revealed paramagnetic nature of the all complexes. Bonding