Aluminum doped zinc selenide ZnSe/n-Si thin films of (250∓20 nm) thickness with (0.01, 0.02 and 0.03), are depositing on the two type of substrate (glass and n-Si) to manufacture (ZnSe/n-Si) solar cell through using thermal vacuum evaporation procedure. physical and optoelectronic properties were examined for the samples. X-Ray and AFM techniques are using to study the structure properties. The energy band gap of as-deposited ZnSe thin films for changed dopant ratio were ranging from (2.6-2.68 eV). The results of Hall effect show that pure and doping films were (p-type), and the concentration carriers and the carriers mobility increases with increase Al-dopant ratio. The (C-V) have shown that the heterojunction were of abrupt type. In addition, the I-V characteristics of ZnSe /Si heterojunctions show the forward dark current varies with applied voltage, besides the saturation current and the ideality factor are determined under different doping percentage. Also, the (I– V) characteristic for ZnSe/Si heterojunction show that the forward current at dark varies with applied voltage and the Isc and Voc have been studied. The photoelectric properties designated an increase light current of hetero junctions with cumulative Al-dopant, and I-V characteristics under illumination showed that the heterojunction (ZnSe: Al (0. 3%)/Si) have a high efficiency.
Abstract
This paper concerned with study the effect of a graphite micro powder mixed in the kerosene dielectric fluid during powder mixing electric discharge machining (PMEDM) of high carbon high chromium AISI D2 steel. The type of electrode (copper and graphite), the pulse current and the pulse-on time and mixing powder in kerosene dielectric fluid are taken as the process main input parameters. The material removal rate MRR, the tool wear ratio TWR and the work piece surface roughness (SR) are taken as output parameters to measure the process performance. The experiments are planned using response surface methodology (RSM) design procedure. Empirical models are developed for MRR, TWR and SR, using the analysis
... Show MoreIn this work, the effect of vortex shedding on the solar collector performance of the parabolic trough solar collector (PTSC) was estimated experimentally. The effect of structure oscillations due to wind vortex shedding on solar collector performance degradation was estimated. The performance of PTSC is evaluated by using the useful heat gain and the thermal instantaneous efficiency. Experimental work to simulate the vortex shedding excitation was done. The useful heat gain and the thermal efficiency of the parabolic trough collector were calculated from experimental measurements with and without vortex loading. The prototype of the collector was fabricated for this purpose. The effect of vortex shedding at different operation condition
... Show MoreThe dental amalgam of radioactive materials in the restoration of teeth because of its readily adaptable to existing materials in the oral cavity in addition to mechanical properties such as hardness mechanical resistance Alndgat and others in this study were prepared Almlagm used Guy dental restoration of silver alloy tin plus some elements to improve the characteristicsmechanical such as copper, zinc or indium in addition to mercury
In this work, a functional nanocomposite consisting of multi walled carbon nanotubes combined with nanoparticles of silver and Pomegranate peel extract (MWCNTs- SNPs -NPGPE) was successfully synthesized using ultra sonic technique. The nanocomposite has been characterized using Transmission electron microscope (TEM), XRD, Energy dispersive X-ray spectroscopy (EDS) UV-Vis and FTIR. The obtained results reveal that the MWCNTs-SNPs-NPGPE nanocomposite exhibits form of nanotubes with rough surfaces and containing black spots, which are the silver nanoparticles. The dimensions of this tube are 161 nm in length and 60 nm in width with nanoparticles of silver not exceeding 20 nm. The XRD pattern of the prepared MWCNTs-SNPs-NPGPE nanocomposite s
... Show MoreThe effect of adding different volume of coumarin dye (5, 15, 25 and 35) ml on optical properties of Poly (Methyl Meth Acrylate) was studied. Films of pure PMMA and PMMA with different volume of coumarin dye (5, 15, 25 and 35) ml were prepared using the casting technique. Transmission and absorption of the films were measured by using UV-VIS spectrometer technique type (100 Conc), in order to assess the type of transmission which was found an indirect transition. An optical energy gap of pure PMMA is (4.95e v) and after adding coumarin with volume (25, 35) ml, the energy gap for PMMA decrease by (0.05) compere to pure PMMA films and addition energy gap appear equal to (4.1 e v). It was found that the absorption coefficient, extinction coeff
... Show MoreThe effect of the concentration of the colloidal nanomaterial on their optical limiting behavior is reported in this paper. The colloids of sliver nanoparticles in deionized water were chemically prepared for the two concentrations (31 ppm and 11ppm). Two cw lasers (473 nm Blue DPSS laser and 532 nm Nd:YAG laser) are used to compare the optical limiting performance for the samples. UV–visible spectrophotometer, transmission electron microscope (TEM) and Fourier Transformation Infrared Spectrometer (FTIR) were used to obtain the characteristics of the sample. The nonlinear refractive index was calculated to be in the order of 10-9 cm2/W. The results demonstrate that the observed limiting response is significant for 532nm. In addition, t
... Show MoreNiO0.99Cu0.01 films have been deposited using thermal evaporation
technique on glass substrates under vacuum 10-5mbar. The thickness
of the films was 220nm. The as -deposited films were annealed to
different annealing temperatures (373, 423, and 473) K under
vacuum 10-3mbar for 1 h. The structural properties of the films were
examined using X-ray diffraction (XRD). The results show that no
clear diffraction peaks in the range 2θ= (20-50)o for the as deposited
films. On the other hand, by annealing the films to 423K in vacuum
for 1 h, a weak reflection peak attributable to cubic NiO was
detected. On heating the films at 473K for 1 h, this peak was
observed to be stronger. The most intense peak is at 2θ = 37
Chlorine doped SnS have been prepared utilizing chemical spray pyrolysis. The effects of chlorine concentration on the optical constants were studied. It was seen that the transmittance decreased with doping, while reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were increased as the doping percentage increased. The results show also that the skin depth decrease as the chlorine percentage increased which could be assure that it is transmittance related.