Aluminum doped zinc selenide ZnSe/n-Si thin films of (250∓20 nm) thickness with (0.01, 0.02 and 0.03), are depositing on the two type of substrate (glass and n-Si) to manufacture (ZnSe/n-Si) solar cell through using thermal vacuum evaporation procedure. physical and optoelectronic properties were examined for the samples. X-Ray and AFM techniques are using to study the structure properties. The energy band gap of as-deposited ZnSe thin films for changed dopant ratio were ranging from (2.6-2.68 eV). The results of Hall effect show that pure and doping films were (p-type), and the concentration carriers and the carriers mobility increases with increase Al-dopant ratio. The (C-V) have shown that the heterojunction were of abrupt type. In addition, the I-V characteristics of ZnSe /Si heterojunctions show the forward dark current varies with applied voltage, besides the saturation current and the ideality factor are determined under different doping percentage. Also, the (I– V) characteristic for ZnSe/Si heterojunction show that the forward current at dark varies with applied voltage and the Isc and Voc have been studied. The photoelectric properties designated an increase light current of hetero junctions with cumulative Al-dopant, and I-V characteristics under illumination showed that the heterojunction (ZnSe: Al (0. 3%)/Si) have a high efficiency.
Study was made on the optical properties of Ge2oSe8othinfilms prepared by vac-uum evaporation as radiated by (0,34,69) Gy of 13 ray.The optical band gab Eg and tailing band A.Et were studied in the photon energy range ( 1 to 3)eV. The a-Ge20Se8o film was found to be indirect gap with energy gap of (1.965,1.9 , 1.82) eV at radiated by B ray with absorption doses of (0,34,69)Gy respectively.The Ea and AEt of Ge20Se80 films showed adecrease in E8 and an increase in AEt with radiation. This be-havior may be related to structural defects and dangling bonds.
Exploding wire Technique is a way for production metal and its compound nanoparticle that is capable of production of bulk amount at low cost semiconductor. In this work a copper iodine nanoparticles were fabricate by exploding copper wires with different currents in iodine solution. The produced samples were examined by XRD, FTIR, SEM and TEM to characterize their properties. The XRD proved the Nano-size for producer. The crystalline size increases with increasing current. FTIR measurements show a peaks located at 638.92 for Cu-I stretch bond indicate on formation of copper iodide compound and the peaks intensities increase with increasing current. The SEM and TEM measurements show that the thin films have nanostructures.
A solar cell was manufactured from local materials and was dyed using dyes extracted from different organic plants. The solar cell glass slides were coated with a nano-porous layer of Titanium Oxide and infused with two types of acids, Nitric acid and Acetic acid. The organic dyes were extracted from Pomegranate, Hibiscus, Blackberry and Blue Flowers. They were then tested and a comparison was made for the amount of voltage they generate when exposed to sunlight. Hibiscus sabdariffa extract had the best performance parameters; also Different plants give different levels of voltage.
In this work, p-n junctions were fabricated from highly-pure nanostructured NiO and TiO2 thin films deposited on glass substrates by dc reactive magnetron sputtering technique. The structural characterization showed that the prepared multilayer NiO/TiO2 thin film structures were highly pure as no traces for other compounds than NiO and TiO2 were observed. It was found that the absorption of NiO-on-TiO2 structure is higher than that of the TiO2-on-NiO. Also, the NiO/TiO2 heterojunctions exhibit typical electrical characteristics, higher ideality factor and better spectral responsivity when compared to those fabricated from the same materials by the same technique and with larger particle size and lower structural purity.
(3) (PDF) Theoretical calculation of the electronic current at N3 contact with TiO2 solar cell devices. Available from: https://www.researchgate.net/publication/362780274_Theoretical_calculation_of_the_electronic_current_at_N3_contact_with_TiO2_solar_cell_devices [accessed May 01 2023].
Cr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.
A pulsed (TEA-0O2) laser was used to dissociate molecules of silane ethylene (C2I-14) and ammonia (NH3) gases, through collision assisted multiple photon dissociation (MPD) to deposit(SiC i_xNx) thin films, where the X-values are 0, 0.13 and 0.33, on glass substrate at T,----648 K. deposition rate of (0.416-0.833) nm/pulse and thickness of (500-1000)nm .Fourier transform infrared spectrometry (FT-IR) was used to study the nature of the chemical bonds that exist in the films. Results revealed that these films contain complex networks of the atomic (Si, C, and N), other a quantity of atomic hydrogen and chemical bonds such as (Si-N, C-N, C-14 and N-H).Absorbance and Transmittance spectra in the wavelength range (400-1100) nm were used to stud
... Show MoreIn this work Nano crystalline (Cu2S) thin films pure and doped 3% Al with a thickness of 400±20 nm was precipitated by thermic steaming technicality on glass substrate beneath a vacuum of ~ 2 × 10− 6 mbar at R.T to survey the influence of doping and annealing after doping at 573 K for one hour on its structural, electrical and visual properties. Structural properties of these movies are attainment using X-ray variation (XRD) which showed Cu2S phase with polycrystalline in nature and forming hexagonal temple ,with the distinguish trend along the (220) grade, varying crystallites size from (42.1-62.06) nm after doping and annealing. AFM investigations of these films show that increase average grain size from 105.05 nm to 146.54 nm
... Show More