Screw piles are widely used in supporting structures subjected to pullout forces, such as power towers and offshore structures, and this research investigates their performance in gypseous soil of medium relative density. The bearing capacity and displacement of a single screw pile model inserted in gypseous soil with various diameters (D = 20, 30, and 40) mm are examined in this study. The soil used in the testing had a gypsum content of 40% and the bedding soil had a relative density of 40%. To simulate the pullout testing in the lab, a physical model was manufactured with specific dimensions. Three steel screw piles with helix diameters of 20, 30, and 40 mm are used, with a total length of 500 mm. The helix is continuous over the pile's embedded depth of 400 mm. The results of tests revealed that decreasing the length to diameter (H/D) ratio resulted in a higher pullout capacity of screw piles and a lower corresponding displacement.
The study presents the performance of flexural strengthening of concrete members exposed to partially unbonded prestressing with a particular emphasis on the amount (0, 14.2, and 28.5%) of cut strands-symmetrical and asymmetrical damage. In addition to examining the influence of cut strands on the remaining capacity of post-tensioned unbonded members and the effectiveness of carbon fiber reinforced polymer laminates restoration, The investigated results on rectangular members subjected to a four-point static bending load based on the composition of the laminate affected the stress of the CFRP, the failure mode, and flexural strength and deflection are covered in this study. The experimental results revealed that the usage of CFRP la
... Show MoreThe present study investigates the effect of the de-sanding (recycling system) on the bearing capacity of the bored piles. Full-scale models were conducted on two groups of piles, the first group was implemented without using this system, and the second group was implemented using the recycling system. All piles were tested by static load test, considering the time factor for which the piles were implemented. The test results indicated a significant and clear difference in the bearing capacity of the piles when using this system. The use of the recycling system led to a significant increase in the bearing capacity of the piles by 50% or more. Thus it was possible to reduce the pile length by (15 % or more) thus, and implementation costs
... Show MoreThe growing water demand has raised serious concerns about the future of irrigated agriculture in many parts all over the world, changing environmental conditions and shortage of water (especially in Iraq) have led to the need for a new system that efficiently manages the irrigation of crops. With the increasing population growing at a rapid pace, traditional agriculture will have a tough time meeting future food demands. Water availability and conservation are major concerns for farmers. The configuration of the smart irrigation system was designed based on data specific to the parameters concerning the characteristics of the plant and the properties of soil which are measured once i
The present study was performed to spotlight the potential role of soil bacteria in the Al-Rumaila oil field as a bioindicator of heavy metals pollution. For this purpose, nine soil samples were collected from different sites, with 20cm depth, to assess the pollution status depending on the total and available concentrations of heavy metals. The result indicates pollution of the studied soils with the following metals: Cd, Cu, Fe, Zn, and Pb. The mean of total concentration for all studied metals was higher than the allowed maximum limit based on the international limit:(3.394, 3.994, 39.993, 8844.979,150.372, and 103.347 µg/g), respectively. While measuring the total Metal concentration is important in determining the de
... Show MoreRecent phosphorus (P) pollution in the United States, mainly in Maine, has raised some severe concerns over the use of P fertilizer application rates in agriculture. Phosphorus is the second most limiting nutrient after nitrogen and has damaging impacts on crop yield if found to be deficient. Therefore, farmers tend to apply more P than is required to satisfy any P loss after its application at planting. Several important questions were raised in this study to improve P efficiency and reduce its pollution. The objective of this study was to find potential reasons for P pollution in water bodies despite a decrease in potato acreage. Historically, the potato was found to be responsible for P water contamination due to its high P sensitivity a
... Show MoreThis work investigates the effect of earthquakes on the stability of a collective pile subjected to seismic loads in the soil layer. Plaxis 3D 2020 finite element software modeled pile behavior in dry soils with sloping layers. The results showed a remarkable fluctuation between the earthquakes, where the three earthquakes (Halabja, El Centro, and Kobe) and the acceleration peak in the Kobe earthquake had a time of about 11 seconds. Different settlement results were shown, as different values were recorded for the three types of earthquakes. Settlement ratios were increased by increasing the seismic intensity; hence the maximum settlement was observed with the model under the effect of the Kobe earthquake (0.58 g), where
... Show MoreIn this study, the induced splined shaft teeth contact and bending stresses have been investigated numerically using finite element method(Ansys package version 11.0) with changing the most effecting design parameter,(pressure angle, teeth number, fillet radius and normal module), for internal and external splined shaft. Experimental work has been achieved using two dimensional photoelastic techniques to get the contact and bending stresses; the used material is Bakelite sheet type “PSM-4”.
The results of numerical stress analysis indicate that, the increasing of the pressure angle and fillet radius decrease the bending stress and increase the contact stress for both internal and external spline shaft teeth while the increasing of
In this study, thermal characteristics of a two-phase closed heat pipe were investigated experimentally and theoretically. A two-phase closed heat pipe (copper container, Fluorocarbon FC-72 (C6F14) working fluid) was fabricated to examine its performance under the effect of input heat flux range of 250–1253 W/m2 , 70% fill charge ratio and various tilt angles. The temperature distribution along the heat pipe, input heat to evaporator section, and output heat from condenser were monitored. A comprehensive mathematical model was developed to investigate the steadystate heat transfer performance of a two-phase closed heat pipe. A steady state analytical model, is presented to determine important parameters on the design of two-phase close
... Show More