Preferred Language
Articles
/
LoYp1YYBIXToZYALd7UO
Investigation of Heat Transfer Enhancement in a Triple Tube Latent Heat Storage System Using Circular Fins with Inline and Staggered Arrangements
...Show More Authors

Inherent fluctuations in the availability of energy from renewables, particularly solar, remain a substantial impediment to their widespread deployment worldwide. Employing phase-change materials (PCMs) as media, saving energy for later consumption, offers a promising solution for overcoming the problem. However, the heat conductivities of most PCMs are limited, which severely limits the energy storage potential of these materials. This study suggests employing circular fins with staggered distribution to achieve improved thermal response rates of PCM in a vertical triple-tube heat exchanger involving two opposite flow streams of the heat-transfer fluid (HTF). Since heat diffusion is not the same at various portions of the PCM unit, different fin configurations, fin dimensions and HTF flow boundary conditions were explored using computational studies of melting in the PCM triple-tube system. Staggered configuration of fin distribution resulted in significant increases in the rates of PCM melting. The results indicate that the melting rate and heat charging rate could be increased by 37.2 and 59.1%, respectively, in the case of staggered distribution. Furthermore, the use of lengthy fins with smaller thickness in the vertical direction of the storage unit resulted in a better positive role of natural convection; thus, faster melting rates were achieved. With fin dimensions of 0.666 mm × 15 mm, the melting rate was found to be increased by 23.6%, when compared to the base case of 2 mm × 5 mm. Finally, it was confirmed that the values of the Reynolds number and inlet temperatures of the HTF had a significant impact on melting time savings when circular fins of staggered distribution were included.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Nov 26 2021
Journal Name
Nanomaterials
Solidification Enhancement in a Multi-Tube Latent Heat Storage System for Efficient and Economical Production: Effect of Number, Position and Temperature of the Tubes
...Show More Authors

Thermal energy storage is an important component in energy units to decrease the gap between energy supply and demand. Free convection and the locations of the tubes carrying the heat-transfer fluid (HTF) have a significant influence on both the energy discharging potential and the buoyancy effect during the solidification mode. In the present study, the impact of the tube position was examined during the discharging process. Liquid-fraction evolution and energy removal rate with thermo-fluid contour profiles were used to examine the performance of the unit. Heat exchanger tubes are proposed with different numbers and positions in the unit for various cases including uniform and non-uniform tubes distribution. The results show that

... Show More
View Publication
Scopus (11)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Thu Aug 04 2022
Journal Name
Journal Of Nanomaterials
Thermal Management of the Melting Process in a Latent Heat Triplex Tube Storage System Using Different Configurations of Frustum Tubes
...Show More Authors

In this study, the energy charging mechanism is mathematically modeled to determine the impact of design modifications on the thermofluidic behavior of a phase change material (PCM) filled in a triplex tube containment geometry. The surface area of the middle tube, where the PCM is placed, is supported by single or multi-internal frustum tubes in vertical triplex tubes to increase the performance of the heating and cooling of the system. In addition to the ordinary straight triplex tubes, three more scenarios are considered: (1) changing the middle tube to the frustum tube, (2) changing the inner tube to the frustum tube, and (3) changing both the internal and central tubes to the frustum tubes. The impact of adopting the tube desig

... Show More
View Publication
Scopus (21)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Applied Energy
Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins
...Show More Authors

View Publication
Scopus (255)
Crossref (243)
Scopus Clarivate Crossref
Publication Date
Fri Mar 05 2021
Journal Name
Materials
Optimum Placement of Heating Tubes in a Multi-Tube Latent Heat Thermal Energy Storage
...Show More Authors

Utilizing phase change materials in thermal energy storage systems is commonly considered as an alternative solution for the effective use of energy. This study presents numerical simulations of the charging process for a multitube latent heat thermal energy storage system. A thermal energy storage model, consisting of five tubes of heat transfer fluids, was investigated using Rubitherm phase change material (RT35) as the. The locations of the tubes were optimized by applying the Taguchi method. The thermal behavior of the unit was evaluated by considering the liquid fraction graphs, streamlines, and isotherm contours. The numerical model was first verified compared with existed experimental data from the literature. The outcomes re

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sat Sep 02 2017
Journal Name
Al-khwarizmi Engineering Journal (alkej)
Augmentation of Nanofluids Heat transfer in a Circular Tube with Baffled Winged Twisted Swirl Generator
...Show More Authors

Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Augmentation of Nanofluids Heat transfer in a Circular Tube with Baffled Winged Twisted Swirl Generator
...Show More Authors

This article introduces a numerical study on heat exchange and corrosion coefficients of Zinc–water nanofluid stream in a circular tube fitted with swirl generator utilizing CFD emulation. Different  forms of swirl generator which have the following properties of plain twisted tape (PTT) and baffle wings twisted tape (BTT) embeds with various ratio of twisting (y = 2.93, 3.91 and 4.89), baffle inclination angles (β = 0°, - 30° and 30) joined with 1%, 1.5% and 2% volume fraction of ZnO nanofluid were utilized for simulation. The results demonstrated that the heat and friction coefficients conducted by these two forms of vortex generator raised with Reynolds number, twist ratio and baffle inclination angles decreases. Likewise, t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 25 2000
Journal Name
Journal Of Advanced Research In Fluid Mechanics And Thermal Sciences
Enhancement of nanofluid heat transfer in elliptical pipe and helical micro tube heat exchanger
...Show More Authors

Publication Date
Mon Nov 01 2021
Journal Name
Journal Of Engineering
Numerical Study for the Tube Rotation Effect on Melting Process in Shell and Tube Latent Heat Energy Storage LHES System
...Show More Authors

Although renewable energy systems have become an interesting global issue, it is not continuous either daily or seasonally. Latent heat energy storage (LHES) is one of the suitable solutions for this problem. LHES becomes a basic element in renewable energy systems. LHES compensate for the energy lack when these systems are at low production conditions. The present work considered a shell and tube LHES for numerical investigation of the tube rotation influence on the melting process. The simulation and calculations were carried out using ANSYS Fluent software. Paraffin wax represents the phase change material (PCM) in this work, while water was selected to be the heat transfer fluid (HTF). The calculations were carried o

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Energy Storage
Effects of non-uniform fin arrangement and size on the thermal response of a vertical latent heat triple-tube heat exchanger
...Show More Authors

View Publication
Scopus (43)
Crossref (40)
Scopus Clarivate Crossref
Publication Date
Wed Nov 01 2023
Journal Name
Case Studies In Thermal Engineering
Augmenting the thermal response of helical coil latent-heat storage systems with a central return tube configuration
...Show More Authors

Low-temperature stratification, high-volumetric storage capacity, and less-complicated material processing make phase-changing materials (PCMs) very suitable candidates for solar energy storage applications. However, their poor heat diffusivities and suboptimal containment designs severely limit their decent storage capabilities. In these systems, the arrangement of tubes conveying the heat transport fluid (HTF) plays a crucial role in heat communication between the PCM and HTF during phase transition. This study investigates a helical coil tube-and-shell thermal storage system integrated with a novel central return tube to enhance heat transfer effectiveness. Three-dimensional computational fluid dynamics simulations compare the proposed d

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref