Background: The synthesis and characterization of novel liquid crystalline compounds have garnered signi|cant attention due to their potential applications in biomedical sciences, including drug delivery systems, biosensing, and diagnostic tools. This study focuses on synthesizing and characterizing new thiazolothiadiazole-based liquid crystals and evaluating their mesophase properties. Methods: A series of novel compounds containing 5H-thiazolo[4,3−b][1,3,4] thiadiazole units were synthesized via multi-step chemical reactions. The synthesis involved the reaction of chloroethyl acetate with 4−hydroxybenzaldehyde to yield an aldehyde intermediate, followed by subsequent transformations using hydrazine hydrate, ethylacetoacetate, and 1,2−dichloromethane or 1,2−dibromoethane. Hydrolysis of an ester intermediate resulted in a carboxylic acid derivative, which was further reacted with 2−phenylenediamine to obtain the |nal product. Characterization: The molecular structures of the synthesized compounds were con|rmed using Fourier Transform Infrared Spectroscopy (FTIR) and 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy. Liquid crystal properties were assessed through Diyerential Scanning Calorimetry (DSC) and Polarized Optical Microscopy (POM) to evaluate phase transitions and mesophase characteristics. Results: The study revealed that compound [V]2 exhibited dimorphic behavior, forming smectic C (SmC) and nematic phases, while compounds [V]1, [VI], and [VII] displayed nematic mesophases. The presence of intermolecular hydrogen bonding in compound [VI] extended the rigid-rod moiety, enhancing terminal molecular interactions and stabilizing the nematic liquid crystal phase. Conclusion: The synthesized thiazolothiadiazole-based liquid crystalline compounds demonstrate promising mesophase behaviors, which could be further explored for biomedical applications such as biosensing, diagnostic imaging, and targeted drug delivery systems. Their structural properties and phase behavior suggest potential use in pathology-related molecular diagnostics and biomaterial research
A hierarchically porous structured zeolite composite was synthesized from NaX zeolite supported on carbonaceous porous material produced by thermal treatment for plum stones which is an agro-waste. This kind of inorganic-organic composite has an improved performance because bulky molecules can easily access the micropores due to the short diffusion path to the active sites which means a higher diffusion rate. The composite was prepared using a green synthesis method, including an eco-friendly polymer to attach NaX zeolite on the carbon surface by phase inversion. The synthesized composite was characterized using X-ray diffraction spectrometry, Fourier transforms infrared spectroscopy, field emission scanning electron microscopy, energy d
... Show MoreA new ligand (H4L) and its complexes with (CoII, NiII, CuII and PdII). This ligand was prepared in two steps, in the first step a solution of terephthaldehyde in methanol reacted under refluxe with 1,2-phenylenediamine to give precursore compound which reacted in the second step with 2,4- dihydroxybenzaldehyde to give the ligand. The complexes were synthesized by direct reaction of the corresponding metal chloride with the ligand. The ligand and complexes were characterized by spectroscopic methods [FT-IR, UV-vis, 1HNMR, HPLC and atomic absorption], chloride contant in addition to conductivity measurement. The stability constant K and Gibbs free energy ∆G were calculated for [[Ni2(H2L)Cl2], [Cu2(H2L)Cl2] complexes using spectrophoto
... Show MoreThe influence of pre- shot peening and welding parameters on mechanical and metallurgical properties of dissimilar and similar aluminum alloys AA2024-T3 and AA6061-T6 joints using friction stir welding have been studied. In this work, numbers of plates were equipped from sheet alloys in dimensions (150*50*6) mm then some of them were exposed to shot peening process before friction stir welding using steel ball having diameter 1.25 mm for period of 15 minutes. FSW joints were manufactured from plates at three welding speeds (28, 40, 56 mm/min) and welding speed 40mm/min was chosen at a rotating speed of 1400 rpm for welding the dissimilar pre- shot plates. Tow joints were made at rotational speed of 1000 rpm and welding speed of 40m/min f
... Show MoreThe cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the
... Show MoreSynthesis And Studies Of Complexes Of Some Elements With 2-Mercaptohiazole (2-HMBT)
Thin films were prepared from poly Berrol way Ketrrukemaaih pole of platinum concentrations both Albaarol and salt in the electrolytic Alastontrel using positive effort of 7 volts on the pole and the electrical wiring of the membrane record
Theligand4-[5-(2-hydoxy-phenyl)- [1,3,4- thiadiazole-2- ylimino methyl]-1,5-dimethyl -2-phenyl-1,2-dihydro-pyrazol-3-one [HL1] is prepared and characterized. It is reacted with poly(vinyl chloride) (PVC) in THF to form the PVC-L compounds ,PVC-L interacted with ions of transition metals to form PVC-L-MII complexes .All prepared compounds are characterized by FTIR spectroscopy, u.v-visible spectroscopy, C.H.N.S. analysis and some of them by 1HNMR
Schiff bases of Ceftizoxime sodium were synthesized in an attempt to improve the antimicrobial spectrum of Ceftizoxime. Aminothiazole ring of Ceftizoxime is linked directly through an imino group to different aromatic aldehydes reacted by nucleophilic addition using trimethylamine (TEA), as a catalyst and refluxed in methanol. The antimicrobial activity was evaluated for such Schiff bases using disc diffusion method. Molecular docking was conducted on certain penicillin-binding proteins (PBPs) and carboxypeptidases using 1- click docking software. Schiff bases of Ceftizoxime were prepared with reasonable yields and their chemical structures were confirmed by spectral analysis (FTIR, 1H-NMR) and elemental microanalysis (CHNS). The antibacter
... Show More