Background: The synthesis and characterization of novel liquid crystalline compounds have garnered signi|cant attention due to their potential applications in biomedical sciences, including drug delivery systems, biosensing, and diagnostic tools. This study focuses on synthesizing and characterizing new thiazolothiadiazole-based liquid crystals and evaluating their mesophase properties. Methods: A series of novel compounds containing 5H-thiazolo[4,3−b][1,3,4] thiadiazole units were synthesized via multi-step chemical reactions. The synthesis involved the reaction of chloroethyl acetate with 4−hydroxybenzaldehyde to yield an aldehyde intermediate, followed by subsequent transformations using hydrazine hydrate, ethylacetoacetate, and 1,2−dichloromethane or 1,2−dibromoethane. Hydrolysis of an ester intermediate resulted in a carboxylic acid derivative, which was further reacted with 2−phenylenediamine to obtain the |nal product. Characterization: The molecular structures of the synthesized compounds were con|rmed using Fourier Transform Infrared Spectroscopy (FTIR) and 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy. Liquid crystal properties were assessed through Diyerential Scanning Calorimetry (DSC) and Polarized Optical Microscopy (POM) to evaluate phase transitions and mesophase characteristics. Results: The study revealed that compound [V]2 exhibited dimorphic behavior, forming smectic C (SmC) and nematic phases, while compounds [V]1, [VI], and [VII] displayed nematic mesophases. The presence of intermolecular hydrogen bonding in compound [VI] extended the rigid-rod moiety, enhancing terminal molecular interactions and stabilizing the nematic liquid crystal phase. Conclusion: The synthesized thiazolothiadiazole-based liquid crystalline compounds demonstrate promising mesophase behaviors, which could be further explored for biomedical applications such as biosensing, diagnostic imaging, and targeted drug delivery systems. Their structural properties and phase behavior suggest potential use in pathology-related molecular diagnostics and biomaterial research
This work involves synthesis of novel Schiff bases derivatives contining isoxazoline or pyrazoline units starting with chalcons . 4-Aminoacetophenone was reacted with 3-nitrobenzaldehyde in basic medium giving chalcone [I] by claisen-schemidt reaction. The chalcone [I] was reacted with hydroxylamine hydrochloride giving isoxazoline [II] in basic medium. The chalcone [I] could also react with hydrazitne hydrate to give pyrazoline [III] . The novel Schiff bases with structural formula [IV] and [V] were prepared by the reaction of amino compounds ; isoxazoline [II] and pyrazolines [III] with p-substituted aldehydes or p-subsituted ketones, respectively in dry benzene using drops of glacial acetic acid as a cat
... Show MoreMercury-lead-antimony based superconductors with the formula Hg0.5 Pb0.5xSbxBa2Ca2Cu3O8+δ (x=0, 0.10 and 0.15) have been prepared by useing three step solid state reaction processes. Electrical resistivity, using four probe technique, is used to find the transition temperature Tc. It is found from that sample Hg0.5 Pb0.5Ba2Ca2Cu3O8.437 is semiconductor , sample Hg0.5 Pb0.4Sb0.1Ba2Ca2Cu3O8.353 is normal state with metallic behaviors, while sample Hg0.5 Pb0.35Sb0.15Ba2Ca2Cu3O8.233 is superconducting state with critical transition temperature (Tc) is 126K. X-ray diffraction (XRD) analysis showed a tetragonal structure with decrease in the c-axis lattice constant for the samples doped with Sb as compared with these which have no Sb
... Show MoreSchiff bases, named after Hugo Schiff, are aldehyde- or ketone-like compounds in which the carbonyl group is replaced by imine or azomethine group. They are widely used for industrial purposes and also have a broad range of applications as antioxidants. An overview of antioxidant applications of Schiff bases and their complexes is discussed in this review. A brief history of the synthesis and reactivity of Schiff bases and their complexes is presented. Factors of antioxidants are illustrated and discussed. Copyright © 2016 John Wiley & Sons, Ltd.
Fatty Acid Methyl Ester (FAME) produced from biomass offers several advantages such as renewability and sustainability. The typical production process of FAME is accompanied by various impurities such as alcohol, soap, glycerol, and the spent catalyst. Therefore, the most challenging part of the FAME production is the purification process. In this work, a novel application of bulk liquid membrane (BLM) developed from conventional solvent extraction methods was investigated for the removal of glycerol from FAME. The extraction and stripping processes are combined into a single system, allowing for simultaneous solvent recovery whereby low-cost quaternary ammonium salt-glycerol-based deep eutectic solvent (DES) is used as the membrane phase.
... Show MoreElectrochemical corrosion of hydroxyapatite (HAP) coated performance depends on various parameters like applied potential, time, thickness and sintering temperature. Thus, the optimum parameters required for the development of stable HAP coatings was found by using electrophoretic deposition (EPD) technique. This study discusses the results obtained from open circuit potential-time measurements (OCP-time), potentiodynamic polarisation and immersion tests for all alloy samples done under varying experimental conditions, so that the optimum coating parameters can be established. The ageing studies of the coated samples were carried out by immersing them in Ringer’s solution for a period of 30 days indicates the importance of stable HAP c
... Show MoreIncorporating the LiDAR sensor in the most recent Apple devices represents a substantial development in 3D mapping technology. Meanwhile, Apple's Lidar is still a new sensor. Therefore, this article reviews the potential uses of the Apple Lidar sensor in various fields, including engineering and construction, focusing on indoor and outdoor as-built 3D mapping and cultural heritage conservation. The affordable cost and shorter observation times compared to traditional surveying and other remote sensing techniques make the Apple Lidar an attractive choice among scholars and professionals. This article highlights the need for continued research on the Apple LiDAR sensor technology while discussing its specifications and limitations. A
... Show MoreIn this work, silicon nitride (Si3N4) thin films were deposited on metallic substrates (aluminium and titanium sheets) by the DC reactive sputtering technique using two different silicon targets (n-type and p-type Si wafers) as well as two Ar:N2 gas mixing ratios (50:50 and 70:30). The electrical conductivity of the metallic (aluminium and titanium) substrates was measured before and after the deposition of silicon nitride thin films on both surfaces of the substrates. The results obtained from this work showed that the deposited films, in general, reduced the electrical conductivity of the substrates, and the thin films prepared from n-type silicon targets using a 50:50 mixing ratio and deposited on both
... Show MoreABSTRACT
This research aim to measure the critical success factors for total quality management applications, in order to know the key and important role played by these factors at applying the total quality management through a comparative study conducted in a number of a private colleges.
The research problem posed a set of questions, the most important ones are: Are the colleges (sample of research) aware of the critical success factors at applying the total quality management? What is the availability of the critical success factors at the work of the colleges (sample of research)?
What are the critical success factors in the work of the researc
... Show MoreIn the present work, the efficiency of Tri-octyl Methyl Ammonium Chloride (TOMAC) ionic liquid was investigated as new and green demulsifier for three types of Iraqi crude oil emulsions (Nafut Khana (NK), Kirkuk and Basrah). The separation efficiency was studied at room temperature and by using microwave heating technique. Several batch experiments were done to specify the suitable conditions for the emulsification and demulsification which were specified as 45 minutes and 3000 rpm for crude oil emulsification while the ionic liquid doses were (500,300,150,50) ppm and the conditions of microwave heating were 1000 watt and 50 second as irradiation time. The results were very encouraging especially for NK and Kirkuk crude oil emulsions whe
... Show More