In modern technology, the ownership of electronic data is the key to securing their privacy and identity from any trace or interference. Therefore, a new identity management system called Digital Identity Management, implemented throughout recent years, acts as a holder of the identity data to maintain the holder’s privacy and prevent identity theft. Therefore, an overwhelming number of users have two major problems, users who own data and third-party applications will handle it, and users who have no ownership of their data. Maintaining these identities will be a challenge these days. This paper proposes a system that solves the problem using blockchain technology for Digital Identity Management systems. Blockchain is a powerful technique to build a digital identity in chain matters that enables a secure environment. The idea of Blockchain is to distribute the data across multiple devices in a cryptographic way, which will reduce the ability to an impossible level. Therefore, in this paper a proposed Digital Identity based on Blockchain (ERC 725, and ERC 735) with MD6 as a hashing algorithm will be implemented in a Secure smart contract can prevent function calls from being carried out until the sender has received confirmation from a reliable issuer; for example, we might include a feature that restricts smart contract interactions to legitimate users only. Many additional use cases are possible with ERC-725, including multi-sig execution approvals and contract call verification in place of key validation.
Abstract
The aim of this study was to prepare rebamipide ocular inserts in order to extend its release on the ocular surface for dry eye treatment. Solubility study was applied to the drug with or without l-arginine using different solvents. Solvent casting technique was used to prepare the inserts; l-arginine was used to solubilize the drug, hydroxypropyl methylcellulose grades (E5 and K15M) and poly ethylene glycol 200 were used as excipients. The inserts were evaluated for their physical and mechanical properties, moisture loss% and absorption %, surface pH, and in-vitro drug release. The use l-arginine exhibited an enhancement of rebamipide solubility in both deionized water and phosphate buffer (pH 7.4) by a
... Show MoreA simple, rapid spectrophotometric method has been established for the determination of chlorpromazine hydrochloride (CPZ) in its pure form and in a tablet formulations. The suggested method is based on the oxidative coupling reaction with4-nitroainlline using KIO3 in acidic solution to produce a violet colored product with maximum absorption at λ=526 nm.The analytical data obtained throughout this study could be summarid as follows: 1ml of 1M HCl (pH=2.2), 1 ml of 4-nitroanilline (1x10-2M), and 1.5ml of (1x10-2)KIO3 per 25 ml reaction medium. The order of a
... Show More
Students’ feedback is crucial for educational institutions to assess the performance of their teachers, most opinions are expressed in their native language, especially for people in south Asian regions. In Pakistan, people use Roman Urdu to express their reviews, and this applied in the education domain where students used Roman Urdu to express their feedback. It is very time-consuming and labor-intensive process to handle qualitative opinions manually. Additionally, it can be difficult to determine sentence semantics in a text that is written in a colloquial style like Roman Urdu. This study proposes an enhanced word embedding technique and investigates the neural word Embedding (Word2Vec and Glove) to determine which perfo
... Show MoreAlthough the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of t
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreWe used to think of grammar as the bones of the language and vocabulary as the flesh to be added given that language consisted largely of life generated chunks of lexis. This “skeleton image” has been proverbially used to refer to that central feature of lexis named collocation- an idea that for the first 15 years of language study and analysis gave a moment‟s thought to English classroom material and methodology.
The work of John Sinclair, Dave Willis, Ron Carter, Michael McCarthy, Michael Lewis, and many others have all contributed to the way teachers today approach the area of lexis and what it means in the teaching/learning process of the language. This also seems to have incorporated lexical ideas into the teaching mechanis
. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show More