In modern technology, the ownership of electronic data is the key to securing their privacy and identity from any trace or interference. Therefore, a new identity management system called Digital Identity Management, implemented throughout recent years, acts as a holder of the identity data to maintain the holder’s privacy and prevent identity theft. Therefore, an overwhelming number of users have two major problems, users who own data and third-party applications will handle it, and users who have no ownership of their data. Maintaining these identities will be a challenge these days. This paper proposes a system that solves the problem using blockchain technology for Digital Identity Management systems. Blockchain is a powerful technique to build a digital identity in chain matters that enables a secure environment. The idea of Blockchain is to distribute the data across multiple devices in a cryptographic way, which will reduce the ability to an impossible level. Therefore, in this paper a proposed Digital Identity based on Blockchain (ERC 725, and ERC 735) with MD6 as a hashing algorithm will be implemented in a Secure smart contract can prevent function calls from being carried out until the sender has received confirmation from a reliable issuer; for example, we might include a feature that restricts smart contract interactions to legitimate users only. Many additional use cases are possible with ERC-725, including multi-sig execution approvals and contract call verification in place of key validation.
In this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge cur
... Show MorePeer-Reviewed Journal
Improving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
This study is planned with the aim of constructing models that can be used to forecast trip production in the Al-Karada region in Baghdad city incorporating the socioeconomic features, through the use of various statistical approaches to the modeling of trip generation, such as artificial neural network (ANN) and multiple linear regression (MLR). The research region was split into 11 zones to accomplish the study aim. Forms were issued based on the needed sample size of 1,170. Only 1,050 forms with responses were received, giving a response rate of 89.74% for the research region. The collected data were processed using the ANN technique in MATLAB v20. The same database was utilized to
Each project management system aims to complete the project within its identified objectives: budget, time, and quality. It is achieving the project within the defined deadline that required careful scheduling, that be attained early. Due to the nature of unique repetitive construction projects, time contingency and project uncertainty are necessary for accurate scheduling. It should be integrated and flexible to accommodate the changes without adversely affecting the construction project’s total completion time. Repetitive planning and scheduling methods are more effective and essential. However, they need continuous development because of the evolution of execution methods, essent
This research was designed to investigate the factors affecting the frequency of use of ride-hailing in a fast-growing metropolitan region in Southeast Asia, Kuala Lumpur. An intercept survey was used to conduct this study in three potential locations that were acknowledged by one of the most famous ride-hailing companies in Kuala Lumpur. This study used non-parametric and machine learning techniques to analyze the data, including the Pearson chi-square test and Bayesian Network. From 38 statements (input variables), the Pearson chi-square test identified 14 variables as the most important. These variables were used as predictors in developing a BN model that predicts the probability of weekly usage frequency of ride-hai
... Show MoreRecently, increasing material prices coupled with more acute environmental awareness and the implementation of regulation has driven a strong movement toward the adoption of sustainable construction technology. In the pavement industry, using low temperature asphalt mixes and recycled concrete aggregate are viewed as effective engineering solutions to address the challenges posed by climate change and sustainable development. However, to date, no research has investigated these two factors simultaneously for pavement material. This paper reports on initial work which attempts to address this shortcoming. At first, a novel treatment method is used to improve the quality of recycled concrete coarse aggregates. Thereafter, the treated recycled
... Show MoreA system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.