Wireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving energy of up to 92% at 4,500 rounds.
Image Fusion Using A Convolutional Neural Network
The physician's commitment to medical insight is affected by several factors that vary from patient to patient in terms of the nature of the disease, the severity of the disease, the age of the patient, and the purpose of undergoing medical intervention. There are circumstances surrounding patients that require the physician to reduce the insight towards them, by concealing medical information. The physician must firmly commit to expanding the scope of his vision to a wider extent than in normal medical work. Therefore, we will discuss in this regard the cases in which medical explanation is reduced and the cases that require confirmation in the following order.
Several Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff
... Show MoreSignificant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing
... Show MoreOver the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time. In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as D
... Show MoreSummaryBackground: Rotavirus infection is the most commoncause of watery viral diarrhea in children younger than 5 years of age; it is a major cause of childhood morbidity and mortality.Objective:The aim of the study is todetermine the clinical picture, age distribution of patients with rotavirus infection and their maternal educational background.Patients &methods: A total of 202 patients suffering from diarrhea were included in this study, over 6 months period( from 1stof March 2011to 30th of August 2011),in Children Welfare Teaching hospital. History and physical examinationwere carried out, anthropometrics measures were done and plotted on Centers for Disease Control& World Health Organization charts to determine the nut
... Show MoreThis paper explores VANET topics: architecture, characteristics, security, routing protocols, applications, simulators, and 5G integration. We update, edit, and summarize some of the published data as we analyze each notion. For ease of comprehension and clarity, we give part of the data as tables and figures. This survey also raises issues for potential future research topics, such as how to integrate VANET with a 5G cellular network and how to use trust mechanisms to enhance security, scalability, effectiveness, and other VANET features and services. In short, this review may aid academics and developers in choosing the key VANET characteristics for their objectives in a single document.
For the graph , the behavior associated with to the majority of the graphical properties of this graph is covered in this article. The reflection of the capabilities of on the Ly constructions is one of the key ideas addressed throughout this paper. For instance, by this technique we can comprehend the mechanism via which groups of relatively tiny structure are exist within Ly.