Industrial buildings usually are designed to sustain several types of load systems, such as dead, live, and dynamic loads (especially the harmonic load produced by rotary motors). In general, these buildings require high-strength structural elements to carry the applied loads. Moreover, Reactive Powder Concrete (RPC) has been used for this purpose because of its excellent mechanical strength and endurance. Therefore, this study provides an experimental analysis of the structural behaviors of reinforced RPC beams under harmonic loads. The experimental program consisted of testing six simply supported RPC beams with lengths of 1500 mm, widths of 150 mm, and thicknesses of 200 mm under harmonic loading with varied frequencies between 10 and 20 Hz. Different steel fiber ratios of 0%, 0.5%, 0.75%, 1.0%, 1.5%, and 1.75% were provided in the concrete mixes to explore the effect of steel fibers on the dynamic behavior of these beams. Except for the steel fiber volume fraction, all of the examined specimens shared the same material attributes and reinforcing details. The outcomes proved the positive effect of adding steel fibers on the dynamic response under the effect of harmonic loading. The optimum volume fraction of steel fibers was characterized by a percentage of 1.5%. Moreover, the vibration amplitude was more affected by the steel fibers than the support reactions. The inertial force increased as the harmonic loading duration increased. This increase in the inertial force by the load duration was enhanced after adding the steel fibers. However, this enhancement started to decline after increasing the steel fiber content to 1.75%.
This paper presents an analytical study on the serviceability of reinforced concrete gable roof beams with openings of different sizes, based on an experimental study which includes 13 concrete gable roof beams with openings under static loading. For deflection and crack widths under static loading at service stage, a developed unified calculation procedure has been submitted, which includes prismatic beams with one opening subjected to flexure concentrated force. The deflection has been calculated with two methods: the first method calculated deflections via relevant equations and the second was Direct Stiffness Method in which the beam is treated as a structural member with several segments constituting the portions with solid sec
... Show MoreThe aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio, compressed reinforcing steel ratio,reinforcing steel size, corner joint shape on the strength of reinforcedconcrete Fc' and delve into it for the most accurate details and concreteconnections about the behavior and resistance of the corner joint ofreinforced concrete, Depending on the available studies and sources inaddition to our study, we concluded that each of these effects had a clearrole in the behavior and resistance of the corner joint of reinforced concreteunder the influence of the negative moment and yield stress. A studyof the types of faults that can be reinforced angle joints obtains detailsand conditions of c
... Show MoreThis study aimed to evaluate the effectiveness of a novel concrete-encased column (CE) using small circular steel tubes filled with cementitious grouting material (GFST) as the primary reinforcement instead of traditional steel bars. The research involved three different types of reinforcement: conventional steel bars, concrete-filled steel tubes with 30% of the reinforcement ratio of steel bars, and concrete-filled steel tubes with the same reinforcement ratio as steel bars. Twenty-four circular concrete columns were tested and categorized into six groups based on the type of reinforcement employed. Each group comprised four columns, with one subjected to concentric axial load, two subjected to eccentric axial load (with eccentrici
... Show MoreThis research concerns study the crack growth in the wall of pipes made of low carbon steel under the impact load and using the effect of hygrothermal (rate of moisture 50% and 50℃ temperature). The environmental conditions were controlled using high accuracy digital control with sensors. The pipe have a crack already. The test was performed and on two type of specimens, one have length of 100cm and other have length 50cm. The results were, when the humidity was applied to the pipe, the crack would enhance to growth (i.e. the number of cycles needed to growth the crack will reduce). In addition, when the temperature was increase the number of cycles needed to growth the crack are reduced because the effect of heat on the mechanical pro
... Show MoreNon-prismatic reinforced concrete (RC) beams are widely used for various practical purposes, including enhancing architectural aesthetics and increasing the overall thickness in the support area above the column, which gives high assurance to services that this will not result in the distortion of construction features and can reduce heights. The hollow sections (recess) can also be used for the maintenance of large structural sections and the safe passage of utility lines of water, gas, telecommunications, electricity, etc. They are generally used in large and complex civil engineering works like bridges. This study conducted a numerical study using the commercial finite element software ANSYS version 15 for analysing RC beams, hol
... Show MoreColumns subjected to pure axial load rarely exist in practice. Reinforced concrete columns are usually subjected to combination of axial and lateral actions and deformations, caused by spatially‐complex loading patterns as during earthquakes causes lateral deflection that in turn affects the horizontal stiffness. In this study, a numerical model was developed in threedimensional nonlinear finite element and then validated against experimental results reported in the literatures,
to investigate the behavior of conventionally RC columns subjected to axial load and . lateral reversal cyclic loading. To achieve this goal, numerical analysis was conducted by using finite element program ABAQUS/Explicit. The variables co
Conventional concretes are nearly unbendable, and just 0.1 percent of strain potential makes them incredibly brittle and stiff. This absence of bendability is a significant cause of strain failure and has been a guiding force in the production of an elegant substance, bendable concrete, also known as engineered cement composites, abbreviated as ECC. This type of concrete is capable of displaying dramatically increased flexibility. ECC is reinforced with micromechanical polymer fibers. ECC usually uses a 2 percent volume of small, disconnected fibers. Thus, bendable concrete deforms but without breaking any further than conventional concrete. This research aims to involve this type of concrete, bendable concrete, that will give solut
... Show MoreIn this study, three strengthening techniques, near-surface mounted NSM-CRFP, NSM-CFRP with externally bonding EB-CFRP, and hybrid CFRP with circularization were studied to increase the seismic performance of existing RC slender columns under lateral loads. Experimentally, 1:3 scale RC models were studied and subjected to both lateral static load and seismic excitation. In the dynamic test, a model was subjected to El Centro 1940 NS earthquake excitation by using a shaking table. According to the test results, the strengthening techniques showed a significant increase in load carrying capacity, of about 86.6%, and 46.6%, for circularization and NSM-CFRP respectively, of the reference unstrengthened columns. On the other hand, column
... Show More