Industrial buildings usually are designed to sustain several types of load systems, such as dead, live, and dynamic loads (especially the harmonic load produced by rotary motors). In general, these buildings require high-strength structural elements to carry the applied loads. Moreover, Reactive Powder Concrete (RPC) has been used for this purpose because of its excellent mechanical strength and endurance. Therefore, this study provides an experimental analysis of the structural behaviors of reinforced RPC beams under harmonic loads. The experimental program consisted of testing six simply supported RPC beams with lengths of 1500 mm, widths of 150 mm, and thicknesses of 200 mm under harmonic loading with varied frequencies between 10 and 20 Hz. Different steel fiber ratios of 0%, 0.5%, 0.75%, 1.0%, 1.5%, and 1.75% were provided in the concrete mixes to explore the effect of steel fibers on the dynamic behavior of these beams. Except for the steel fiber volume fraction, all of the examined specimens shared the same material attributes and reinforcing details. The outcomes proved the positive effect of adding steel fibers on the dynamic response under the effect of harmonic loading. The optimum volume fraction of steel fibers was characterized by a percentage of 1.5%. Moreover, the vibration amplitude was more affected by the steel fibers than the support reactions. The inertial force increased as the harmonic loading duration increased. This increase in the inertial force by the load duration was enhanced after adding the steel fibers. However, this enhancement started to decline after increasing the steel fiber content to 1.75%.
Destiny functional theory (DFT) calculations are undertaken in order to scrutinize the electrochemical and calcium (Ca) storage characteristics of a graphyne-like aluminum nitride monolayer (G-AlNyen) as an electrode material for Ca-ion batteries (CIBs). The results show that the change in internal energy as well as the cell voltage values for the CIB with the G-AlNyen anode are comparable to others with two-dimensional 2D nano-materials. It is shown that Ca is adsorbed primarily onto the center of a hexagonal and triangular ring of G-AlNyen with absorption energies of −2.06 and −0.42 eV. After increasing the concentration of Ca atoms on G-AlNyen, the adsorption energy as well as the cell voltage decreases. Lower values of 0.15–0.32 e
... Show MoreCIGS nanoink has synthesized from molecular precursors of CuCl, InCl3, GaCl3 and Se metal heat up 240 °C for a half hour in N2-atmosphere to form CIGS nanoink, and then deposited onto substrates of soda-lime glass (SLG). This work focused on CIGS nanocrystals, indicates their synthesis and applications in photovoltaic devices (PVs) as an active light absorber layers. in this work, using spin-coating to deposit CIGS layers (75 mg/ml and 500 nm thickness), without selenization at high temperatures, were obtained up to 1.398 % power conversion efficiency (PCE) at AM 1.5 solar illumination. Structural formations of CIGS chalcopyrite structure were studied by using x ray diffraction XRD. The morphology and composition of CIGS were studied using
... Show MoreThe primary objective of this study is to manage price market items in the construction of walls for affordable structures with load-bearing hollow masonry units using the ACI 211.1 blend design with a slump range of 25-50 mm that follows the specification limits of IQS 1077. It was difficult to reach a suitable cement weight to minimum content (economic and environmental goal), so many trail mixtures were cast. A portion (10-20%) of the coarse aggregates was replaced with concrete, tile, and clay-brick waste. Finally, two curing methods were used: immersion under water as normal curing, and water spraying as it is closer to the field conditions. The recommendation in IQS 1077 to increase the curing period from 14 to 28 days was tak
... Show MoreIn this study, industrial fiber and polymer mixtures were used for high-speed impact (ballistic) applications where the effects of polymer (epoxy), polymeric
mixture (epoxy + unsaturated polyester), synthetic rubber (polyurethane), Kevlar fiber, polyethylene fiber (ultra High molecular weight) and carbon fiber.
Four successive systems of samples were prepared. the first system component made of (epoxy and 2% graphene and 20 layer of fiber), then ballistic test was
applied, the sample was successful in the test from a distance of 7 m. or more than, by using a pistol personally Glock, Caliber of 9 * 19 mm. The second
system was consisting of (epoxy, 2% graphene, 36 layers of fiber and one layer of hard rubber), it was succeeded
Nanofluids, liquid suspensions of nanoparticles (Np), are an effective agent to alter the wettability of oil-wet reservoirs to water-wet thus promoting hydrocarbon recovery. It can also have an application to more efficient carbon storage. We present a series of contact angle (θ) investigations on initially oil-wet calcite surfaces to quantify the performance of hydrophilic silica nanoparticles for wettability alteration. These tests are conducted at typical in-situ high pressure (CO2), temperature and salinity conditions. A high pressure–temperature (P/T) optical cell with a regulated tilted surface was used to measure the advancing and receding contact angles at the desired conditions. The results showed that silica nanofluids can alte
... Show MoreNanosponges (NS) of etodolac(ETO) was prepared using the emulsion solvent diffusion method ; the effects of drug: polymer ratio, the effect of level concentration of internal phase and stirring time and other variables that effect on the physical characteristics of NS were investigated and characterized, The selected formula was lyophilized then incorporated into hydrogel ; which also evaluated .The results show that the formulation that contain Drug: PVA:EC in ratio 1:3:2 is the best with smallest particle size 40.2±0.098 with polydispersibility0.005 and in vitro release 97.6±0.11%, , ETO NS Carbopol hydrogel produced a significant(p<0.05) improvement of the in vitro release than pure ETO hydrogel.