At present, numerous novel chemical compounds face challenges related to their limited solubility in aqueous environments. These compounds are classified under the Biopharmaceutical Classification System (BCS) as either class II or class IV substances. Different carriers were used to increase their solubility. Candesartan cilexetil (CC) is one of the most widely used antihypertensive drugs, which belongs to class II drugs. The aim of this research was to enhance the solubility and dissolution rate of CC through a complexation approach involving β-cyclodextrin and its derivatives, specifically hydroxypropyl beta cyclodextrin (HP-β-CD), methyl beta cyclodextrin (M-β-CD), and sulfonyl ether beta-cyclodextrin (SBE-β-CD), serving as complexing agents. This complexation process was investigated both with and without the inclusion of poloxamer 407 (PX407) as a hydrophilic polymer. The complex was prepared through a combination of grinding, kneading, and co-evaporation techniques. The resulting complex underwent characterization, including assessments of its percentage yield, drug content, solubility, and dissolution properties, as well as analyses using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and fourier transforms infrared spectroscopy (FTIR). The results revealed that, the complex prepared using 1:1 molar ratio of M -β-CD:CC in the presence of 5% w/w PX407 by co-evaporation method had the highest percentage yield (97%) with drug content of 98.5%, the highest solubility (0.052 mg/mL) and fastest release of drug within 45 minutes compared to the other methods. The FTIR, DSC, and XRD confirmed the development of a partial inclusion complex of an amorphous nature
Nanostructured photodetectors have garnered great attention due to their enriched electronic and optical properties. In this work, we aim to fabricate a high-performance CeO2/Si photodetector by growing a CeO2 nanostructure film on a silicon substrate using the pulsed laser deposition (PLD) technique at different laser energy densities. The impact of laser energy density and the number of pulses on the morphological, optical, and electrical properties was studied. Field emission scanning electron microscopy (FESEM) results show that the CeO2 film has a spherical grain morphology with an average grain size ranging from 33 to 54 nm, depending on the laser energy density. The film deposited at various numbers of laser pulses also has spherical
... Show MoreNowadays, the robotic arm is fast becoming the most popular robotic form used in the industry among others. Therefore, the issues regarding remote monitoring and controlling system are very important, which measures different environmental parameters at a distance away from the room and sets various condition for a desired environment through a wireless communication system operated from a central room. Thus, it is crucial to create a programming system which can control the movement of each part of the industrial robot in order to ensure it functions properly. EDARM ED-7100 is one of the simplest models of the robotic arm, which has a manual controller to control the movement of the robotic arm. In order to improve this control s
... Show MoreThere is no doubt that optical fiber technology is one of the most important stages of the communications revolution at all and it is of utmost importance in our daily life. In this work, five fibers with core radii 2.5, 4.5 and 6.5–8.5 μm were designed. The properties of all guided modes have been calculated at a wavelength of 1550 nm by using RP Fiber Calculator. A single-mode fiber is obtained when the core radius approaches the wavelength. As the core radius is increased, the fiber becomes a multimode. The percentage power in the core increases with increasing core radius. The modes profiles were illustrated and compared with the modern references.
This study was designed to determine the colonization of the in-use hand washing soaps in hospital settings. It is a comparative cross-sectional research in a surgical specialties and Baghdad teaching hospital in Baghdad, Iraq. Swabs from surfaces of bar soaps and from liquid soaps via their applicator tips; at the sinks of toilets of hospital staff and working rooms of the wards were taken in January 2008. Conventional microbiologic methods were used for culture of the swabs and identification of the isolates. Colonization was detected 60% and 15.9% in bars and liquid forms respectively. And this lead to the conclusion that bar soaps could be colonized with microorganisms excessively. Liquid hand washing soaps are more appropriate in ho
... Show MoreIn this study, four different spectrophotometric methods were applied for determination of cimetidine and erythromycin ethylsuccinate drugs in pure form and in their pharmaceutical preparations. The suggested methods are simple, sensitive, accurate, not time consuming and inexpensive. The results showed the following: The first method: Based on the formation of ion pair complex of each drug with bromothymol blue (BTB) as a chromogenic reagent. The formed complexes were extracted with chloroform and their absorbance values were measured at 427.5 nm for cimetidine and 416.5nm for erythromycin ethylsuccinate; against their reagents blanks. Two different methods, univariate method and multivariate method, were used to obtain the optimum condit
... Show MoreDC planar sputtering system is characterized by varying discharge potential of (250-2000 volt) and Argon gas pressures of (3.5×10-2 – 1.5) mbar. The breakdown voltage for silver electrode was studied with a uniform electric field at different discharge distances, as well as plasma parameters. The breakdown voltage is a product of the Argon gas pressure inside the chamber and gab distance between the electrodes, represent as Paschen curve. The Current-voltage characteristics curves indicate that the electrical discharge plasma is working in the abnormal glow region. Plasma parameters were found from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values of the electron temperature an
... Show MoreAbstract
Lightweight materials is used in the sheet metal hydroforming process, because it can be adapted to the manufacturing of complex structural components into a single body with high structural stiffness. Sheet hydroforming has been successfully developed in industry such as in the manufacturing of the components of automotive.The aim of this study is to simulate the experimental results ( such as the amount of pressure required to hydroforming process, stresses, and strains distribution) with results of finite element analyses (FEA) (ANSYS 11) for aluminum alloy (AA5652) sheets with thickness (1.2mm) before heat treatm
... Show MoreObjectives: The main objective of this study is to examine the crucial role that Russian writers and intellectuals played in catalyzing the 1905 Revolution in Russia. Specifically, the study sought to analyze how their literary works, philosophical ideas, and political writings challenged Tsarist autocracy, depicted the suffering of the masses, and inspired opposition movements. The study aimed to highlight the defiant writings that contributed to the rise of political figures and the eventual overthrow of the repressive regime. Methods: The historical narrative and analytical methods were employed, conducting a comparative analysis of prominent works by renowned authors such as Tolstoy, Gorky, and Chekhov. This analysis focused on
... Show More