Pultruded materials made of Fiber-Reinforced Polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, etc. FRP materials are starting to compete with steel as structural materials owing to their great resistance, low self-weight, and cheap maintenance costs, especially in corrosive conditions. This study aims to evaluate the effectiveness of a novel concrete Composite Column (CC) using Encased I-Section (EIS) as a reinforcement in contrast to traditional steel bars by using Glass Fiber-Reinforced Polymer (GFRP) as I-section (CC-EIS) to evaluate the effectiveness of the hybrid columns which have been built by combining GFRP profiles with concrete columns. To achieve the aims of this study, nine circular columns with a diameter of 150 mm and a height of 1000 mm were cast with compression strength equal to 42.4 MPa at the test day. The research involved three different types of reinforcement: Hybrid circular columns with GFRP I-section and 1% reinforcement ratio of steel bars, Hybrid circular columns with steel I-section and 1% reinforcement ratio of steel bars (the cross-section area of the I-section was the same for GFRP and for steel), and a reference column without an I-section. This study investigates the ultimate capacity, axial and lateral deformation, and failure mode of the circular columns under different loading conditions: concentric, eccentric (with eccentricities of 25 mm), and flexural loading. The results showed that the ultimate capacity of the composite columns using either encased steel I-section or GFRP I-section was higher than the traditional columns under all loading conditions. The concentric tested specimens, with steel I-section and with GFRP I-section, exceeded the ultimate strength of the reference specimen by 8.9% and 2.9%, respectively. Specimens with steel I-section and GFRP I-section achieved 11.9% and 9.7% higher ultimate strength than the reference specimens under a compression load of 25 mm eccentricity. Specimens with steel I-section and the specimens with GFRP I-section achieved ultimate strengths of 114.3% and 36.6% under flexural loading testing.
In this study, the mechanical properties of an epoxy and unidirectional woven carbon with fiberglass composite were experimentally investigated. When preparing the composite samples, American Society for Testing and Materials (ASTM)standard was used. Tensile, impact and flexural test were conducted to investigate the mechanical properties of the new produced epoxy Unidirectional Woven Carbon and Epoxy Fiberglass composites. The outcome showed that the strength of the produced samples increased with the increase in the number of unidirectional woven carbon layers added. Two methods were utilized: (1) woven carbon composite with glass fiber (2) woven carbon composite). The two methods of composite were compared with each other. The resul
... Show MoreIn this study, chemical oxidation was employed for the synthesis of polypyrrole (PPy) nanofiber. Furthermore, PPy has been subjected to treatment using nanoparticles of neodymium oxide (Nd2O3), which were produced and added in a certain ratio. The inquiry centered on the structural characteristics of the blend of polypyrrole and neodymium oxide after their combination. The investigation utilises X-ray diffraction (XRD), FTIR, and Field Emission Scanning Electron Microscopy (FE-SEM) for PPy, 10%, 30%, and 50% by volume of Nd2O3. According to the electrochemical tests, it has been noted that the nanocomposites exhibit a substantial amount of pseudocapacitive activity.
priorities of materials research due to their promising properties, especially in the field of thermoelectricity. The efficiency or performance of thermoelectric devices is expressed in terms of the thermoelectric figure-of-merit (ZT) – a standard indicator of a material’s thermoelectric properties for use in cooling systems. The evaluation of ZT is principally determined by the thermoelectric characteristics of the nanomaterials. In this paper, a set of investigative computations was performed to study the thermoelectric properties of monolayer TMDCs according to the semiclassical treatment of the Boltzmann transport equation. It was confirmed that the thermoelectric properties of 2D materials can be greatly improved compared with thei
... Show MoreAn experimental work has been done to study the major factors that affect the axial dispersion of some hydrocarbons during liquid-liquid miscible displacement. Kerosene and gas oil are used as displacing phase while seven liquid hydrocarbons of high purity represent the displaced phase, three of the liquids are aromatics and the rest are of paraffinic base. In conducting the experiments, two packed beds of different porosity and permeability are used as porous media.
The results showed that the displacement process is not a piston flow, breakthrough of displacing fluids are shown before one pore volume has been injected. The processes are stable with no evidence of viscous fingering.
Dispersion model as a
... Show MoreThe genic variation analysis of Pseudomonas aeruginosa after filtering the spurious variation appeared that 222 variable loci out of 5572 loci were detected. The type of variation analysis revealed that single nucleotide polymorphism was highly significant compared with other types of variation due the fact that the genome variation was achieved on the level of microevolution. Moreover, the proportional effect of functional scheme showed that genes responsible for environmental information were the highest comparable to another scheme. The genes of environmental information processing locate on outer membrane and face the defense strategy of the host therefore change in proteins coded by these genes lead to escape the immune system defense
... Show MoreBlends of Polymethyl methacrylate (PMMA)/polyvinyl alcohol (PVA) doped with 2% weight percentage of Sn were prepared with different blend ratios using casting technique. The measurements of A.C conductivity σa.c within the frequency range (25kHz – 5MHz) of undoped and Sn doped PMMA/PVA blends obeyed the relationship σ= Aws were the value of s within the range 0 > s > 1. The results showed that σa.c increases with the increase of frequency. The exponent s showed preceding increase with the increase of PVA content for PMMA/PVA blends doped with Sn. The dielectric constant, dielectric loss, A.C electrical conductivity are varied with the concentration of PVA in the blend and frequency of applied electrical field.
Summary
The conflict between Arab and Zionist movement before 1948 was not normal dispute about certain issue or quarrel on borders, it is comprehensive conflict, this research intraduce analytical and outlook future reading about Palestine identity in time of occupation and resistance in the first studying we take the concept of identity and the fundamental relationship identity history and geography. Our research treated the contents of palest Iain and Isralian identsunder. The political, cultural and military conflict between Israil and Palestine. The research introduce analytic study of research introduce analytic study of intellectual orientation of Zionist state in order to determine the exact meaning of this identity, beca
... Show MoreThe study is devoted to both static and earthquake response analysis of retaining structures acted upon by lateral earth pressure. Two main approaches were implemented in the analysis, namely, the Mononobe-Okabe analytical method and the numerical Finite element procedure as provided in the ready software ABAQUS with explicit dynamic method. A basic case study considered in the present work is the bridge approach retaining walls as a part of AL-Jadiriya bridge intersection to obtain the effects of the backfill and the ground water on the retaining wall response including displacement of the retaining structure in addition to the behavior of the fill material. Parametric studies were carried out to evaluate the effects of several factors
... Show MoreThis paper presents a novel idea as it investigates the rescue effect of the prey with fluctuation effect for the first time to propose a modified predator-prey model that forms a non-autonomous model. However, the approximation method is utilized to convert the non-autonomous model to an autonomous one by simplifying the mathematical analysis and following the dynamical behaviors. Some theoretical properties of the proposed autonomous model like the boundedness, stability, and Kolmogorov conditions are studied. This paper's analytical results demonstrate that the dynamic behaviors are globally stable and that the rescue effect improves the likelihood of coexistence compared to when there is no rescue impact. Furthermore, numerical simul
... Show More