Pultruded materials made of Fiber-Reinforced Polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, etc. FRP materials are starting to compete with steel as structural materials owing to their great resistance, low self-weight, and cheap maintenance costs, especially in corrosive conditions. This study aims to evaluate the effectiveness of a novel concrete Composite Column (CC) using Encased I-Section (EIS) as a reinforcement in contrast to traditional steel bars by using Glass Fiber-Reinforced Polymer (GFRP) as I-section (CC-EIS) to evaluate the effectiveness of the hybrid columns which have been built by combining GFRP profiles with concrete columns. To achieve the aims of this study, nine circular columns with a diameter of 150 mm and a height of 1000 mm were cast with compression strength equal to 42.4 MPa at the test day. The research involved three different types of reinforcement: Hybrid circular columns with GFRP I-section and 1% reinforcement ratio of steel bars, Hybrid circular columns with steel I-section and 1% reinforcement ratio of steel bars (the cross-section area of the I-section was the same for GFRP and for steel), and a reference column without an I-section. This study investigates the ultimate capacity, axial and lateral deformation, and failure mode of the circular columns under different loading conditions: concentric, eccentric (with eccentricities of 25 mm), and flexural loading. The results showed that the ultimate capacity of the composite columns using either encased steel I-section or GFRP I-section was higher than the traditional columns under all loading conditions. The concentric tested specimens, with steel I-section and with GFRP I-section, exceeded the ultimate strength of the reference specimen by 8.9% and 2.9%, respectively. Specimens with steel I-section and GFRP I-section achieved 11.9% and 9.7% higher ultimate strength than the reference specimens under a compression load of 25 mm eccentricity. Specimens with steel I-section and the specimens with GFRP I-section achieved ultimate strengths of 114.3% and 36.6% under flexural loading testing.
This paper deals with the determination of stresses and deflections of clamped circular diaphragm strengthened by one or two ring-shaped concentric ribs, under uniform static and dynamic pressures. The simulation has been achieved by using the well-known engineering software finite element package MSC/NASTRAN.
As a design study, the effect of using a clamped ring, and the effect of using a ring-shaped rib on both surfaces of diaphragm instead of one, has been discussed in this work. To show the effectiveness of this study, results of this work have been compared with published data [1].
In the conclusion, the authors underline the validity of the&n
... Show MoreAn Experimental comparison between the current-voltage
characteristic and the efficiency conversion from solar to electric energy were studied for square and circular single crystal silicon solar
cell of equal area (35.28 cm2) . The results show that the solar shape is
an important factor in calculating the current-voltage characteristics and efficiency of the solar cell. It was shown that the performance effici
... Show MoreThis study aimed to obtain a local isolation of Aspergillus niger and then studied its ability to produce citric acid from raw materials available locally using solid state fermentation. Six local isolates were collected from different sources including some samples of the damaged fruits such as grapefruit, oranges and sindi. Wheat bran was used as a raw material or as culture medium for the production of citric acid from the collected isolates. The conditions for citric acid production were determined by humidity percentage of 1: 1 (water: culture medium), temperature of 28 C, pH 4 and inoculum dose with 5× 106 spore/ml and for 3 days of incubation. The orange was the best model for citric acid production with a concentration of 12.8 mg/m
... Show MoreBackground: Prophylaxis methods are used to mechanically remove plaque and stain from tooth surfaces; such methods give rise to loss of superficial structure and roughen the surface of composites as a result of their abrasive action. This study was done to assess the effect of three polishing systems on surface texture of new anterior composites after storage in artificial saliva. Materials and methods: A total of 40 Giomer and Tetric®N-Ceram composite discs of 12 mm internal diameter and 3mm height were prepared using a specially designed cylindrical mold and were stored in artificial saliva for one month and then samples were divided into four groups according to surface treatment: Group A (control group):10 specimens received no surfa
... Show MoreGeotechnical engineers have always been concerned with the stabilization of slopes. For this purpose,
various methods such as retaining walls, piles, and geosynthetics may be used to increase the safety factor of slopes prone to failure. The application of stone columns may also be another potential alternative for slope stabilization. Such columns have normally been used for cohesive soil improvement. Most slope analysis and design is based on deterministic approach i.e a set of single valued design parameter are adopted and a set of single valued factor of safety (FOS) is determined. Usually the FOS is selected in view of the understanding and knowledge of the material parameters, the problem geometry, the method of analysis and the
Based on a finite element analysis using Matlab coding, eigenvalue problem has been formulated and solved for the buckling analysis of non-prismatic columns. Different numbers of elements per column length have been used to assess the rate of convergence for the model. Then the proposed model has been used to determine the critical buckling load factor () for the idealized supported columns based on the comparison of their buckling loads with the corresponding hinge supported columns . Finally in this study the critical buckling factor () under end force (P) increases by about 3.71% with the tapered ratio increment of 10% for different end supported columns and the relationship between normalized critical load and slenderness ratio was g
... Show MoreThe Experiment was carried out to determine the level vibration transfer in three axes Horizontal X, Lateral Y and Vertical Z direction to seat driver tractor, Vector sum of vibration and Daily Vibration Exposure (8 hours) in seat driver tractor, and vibration in steering wheel tractor, Heart Rate, Systolic and Diastolic blood pressure and temperature were measure to all Drivers before and after used Chisel plow in operation tillage. Statistical analysis system was used, Split-Split Plot Design under Randomized Complete Block Design, Three factors were used in this experiment included Two types of Soil Moist and Dry soil which represented main plot, Three Velocity Tractor was second factor included 1.6,3.5 and 5.4 km/hr and Three Drivers Tr
... Show MoreThe stress(Y) – strength(X) model reliability Bayesian estimation which defines life of a component with strength X and stress Y (the component fails if and only if at any time the applied stress is greater than its strength) has been studied, then the reliability; R=P(Y<X), can be considered as a measure of the component performance. In this paper, a Bayesian analysis has been considered for R when the two variables X and Y are independent Weibull random variables with common parameter α in order to study the effect of each of the two different scale parameters β and λ; respectively, using three different [weighted, quadratic and entropy] loss functions under two different prior functions [Gamma and extension of Jeffery
... Show More