Preferred Language
Articles
/
LhccoZIBVTCNdQwCCLs_
Experimental Investigation of Composite Circular Encased GFRP I-Section Concrete Columns under Different Load Conditions
...Show More Authors

Pultruded materials made of Fiber-Reinforced Polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, etc. FRP materials are starting to compete with steel as structural materials owing to their great resistance, low self-weight, and cheap maintenance costs, especially in corrosive conditions. This study aims to evaluate the effectiveness of a novel concrete Composite Column (CC) using Encased I-Section (EIS) as a reinforcement in contrast to traditional steel bars by using Glass Fiber-Reinforced Polymer (GFRP) as I-section (CC-EIS) to evaluate the effectiveness of the hybrid columns which have been built by combining GFRP profiles with concrete columns. To achieve the aims of this study, nine circular columns with a diameter of 150 mm and a height of 1000 mm were cast with compression strength equal to 42.4 MPa at the test day. The research involved three different types of reinforcement: Hybrid circular columns with GFRP I-section and 1% reinforcement ratio of steel bars, Hybrid circular columns with steel I-section and 1% reinforcement ratio of steel bars (the cross-section area of the I-section was the same for GFRP and for steel), and a reference column without an I-section. This study investigates the ultimate capacity, axial and lateral deformation, and failure mode of the circular columns under different loading conditions: concentric, eccentric (with eccentricities of 25 mm), and flexural loading. The results showed that the ultimate capacity of the composite columns using either encased steel I-section or GFRP I-section was higher than the traditional columns under all loading conditions. The concentric tested specimens, with steel I-section and with GFRP I-section, exceeded the ultimate strength of the reference specimen by 8.9% and 2.9%, respectively. Specimens with steel I-section and GFRP I-section achieved 11.9% and 9.7% higher ultimate strength than the reference specimens under a compression load of 25 mm eccentricity. Specimens with steel I-section and the specimens with GFRP I-section achieved ultimate strengths of 114.3% and 36.6% under flexural loading testing.

Scopus Crossref
View Publication
Publication Date
Thu Feb 12 2026
Journal Name
Journal Of Baghdad College Of Dentistry
Evaluation of marginal gap at the composite/enamel interface in Class II composite resin restoration by SEM after thermal and mechanical load cycling (An in vitro comparative study)
...Show More Authors

Background: This study compared in vitro the marginal adaptation of three different, low shrink, direct posterior composites Filtekâ„¢ P60 (packable composite), Filtekâ„¢ P90 (Silorane-based composite) and Sonic fillâ„¢ (nanohybrid composite) at three different composite/enamel interface regions (occlusal, proximal and gingival regions) of a standardized Class II MO cavity after thermal changes and mechanical load cycling by scanning electron microscopy. Materials and methods:Thirty six sound human maxillary first premolars of approximately comparable sizes were divided into three main groups of (12 teeth) in each according to the type of restorative material that was used: group (A) the teeth were restored with Filtekâ„¢ P6

... Show More
View Publication Preview PDF
Publication Date
Fri Nov 01 2019
Journal Name
Renewable Energy
Test of solar adsorption air-conditioning powered by evacuated tube collectors under the climatic conditions of Iraq
...Show More Authors

View Publication
Scopus (22)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Thu Jan 10 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Numerical and Experimental Study of Winglet Effect with Different Cant Angles
...Show More Authors

The present work aims to investigate the aerodynamic characteristics of the winglet cant angle of Boeing 737-800 wing numerically and experimentally. The wing contain two swept angles 38.3o and 29.13o respectively, taper ratio 0.15 and aspect ratio 8.04. The wing involves three types of airfoils sections. Four cant angles for blended winglet have been considered (0o, 34o, 60o, 83.3o). The winglet has been analyzed to find the best cant angle for the wing without and with winglet. These models have been tested theoretically at Reynolds number of 2.06 x106 in order to study the winglet aerodynamic characteristics which consist of coefficient of Drag, coefficient of lift and Lift to drag ratio, pitching moment coefficient and bending moment co

... Show More
Publication Date
Thu Apr 01 2021
Journal Name
Journal Of Bridge Engineering
Experimental Investigation of Curved-Soffit RC Bridge Girders Strengthened in Flexure Using CFRP Composites
...Show More Authors

View Publication
Crossref (11)
Crossref
Publication Date
Wed Feb 05 2003
Journal Name
. Sc. Conf. Of The College 5th Of Eng. Univ. Of Baghdad 2003
COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION OF THE AERODYNAMIC CHARACTERISTICS FOR A FORWARD SWEPT WING AIRCRAFT
...Show More Authors

The aerodynamic characteristics of the forward swept wing aircraft have been studied theoretically and experimentally. Low order panel method with the Dirichlet boundary condition have been used to solve the case of the steady, inviscid and compressible flow. Experimentally, a model was manufactured from wood to carry out the tests. The primary objective of the experimental work was the measurements of the wake dimensions and orientation, velocity defect along the wake and the wake thickness. A blower type low speed (open jet) wind tunnel was used in the experimental work. The mean velocity at the test section was (9.3 m/s) and the Reynolds number based on the mean aerodynamic chord and the mean velocity was (0.46x105). The measurements sho

... Show More
View Publication
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
Experimental Investigation of Natural Convection into a Horizontal Annular Tube with Porous Medium Effects
...Show More Authors

In this work, an experimental investigation has been done for heat transfer by natural-convection through a horizontal concentric annulus with porous media effects. The porous structure in gap spacing consists of a glass balls and replaced by plastic (PVC) balls with different sizes. The outer surface of outer tube is isothermally cooled while the outer surface of inner tube is heated with constant heat flux condition. The inner tube is heated with different supplied electrical power levels. Four different radius ratios of annulus are used. The effects of porous media material, particles size and annulus radius ratio on heat dissipation in terms of average Nusselt number have been analyzed.

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
An Experimental Investigation on Fatigue Properties of AA3003-H14 Aluminum alloy Friction Stir Welds
...Show More Authors

AA3003-H14 aluminum alloy plates were welded by friction stir welding and TIG welding.
Fatigue properties of the welded joints were evaluated based on the superior tensile properties for
FSW at 1500 rpm rotational speed and 80 mm/min welding speed. However, there is not much
information available on effect of welding parameters with evolution of fatigue life of friction stir
welds. The present study experimentally analyzed fatigue properties for base, FSW, and TIG welds
of AA 3003-H14 aluminum alloy. Fatigue properties of FSW joints were slightly lower than the
base metal and higher than TIG welding.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Dec 02 2023
Journal Name
Journal Of Engineering
Simulation and Experimental Investigation of Performance and Flow Behavior for Steam Ejector Refrigeration System
...Show More Authors

The ejector refrigeration system is a desirable choice to reduce energy consumption. A Computational Fluid Dynamics CFD simulation using the ANSYS package was performed to investigate the flow inside the ejector and determine the performance of a small-scale steam ejector. The experimental results showed that at the nozzle throat diameter of 2.6 mm and the evaporator temperature of 10oC, increasing boiler temperature from 110oC to 140oC decreases the entrainment ratio by 66.25%. At the boiler temperature of 120oC, increasing the evaporator temperature from 7.5 to 15 oC increases the entrainment ratio by 65.57%. While at the boiler temperature of 120oC and

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Nov 01 2010
Journal Name
Iraqi Journal Of Physics
Determination of Skip Entry Trajectories for Space Vehicles at Circular and Super Circular Speeds
...Show More Authors

The study of entry and reentry dynamics for space vehicles is very important, particularly for manned vehicles and vehicles which is carry important devices and which can be used again. There are three types for entry dynamic, ballistics entry, glide entry and skip entry. The skip entry is used in this work for describing entry dynamics and determining trajectory. The inertia coordinate system is used to derive equations of motion and determines initial condition for skip entry. The velocity and drag force for entry vehicle, where generate it during entry into earth’s atmosphere are calculated in this work. Also the deceleration during descending and determining entry angles, velocities ratio and altitude ratio have been studied. The c

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Serviceability behavior of High Strength Concrete I-beams reinforced with Carbon Fiber Reinforced Polymer bars
...Show More Authors

Fiber Reinforced Polymer (FRP) bars are anisotropic in nature and have high tensile strength in the fiber direction. The use of High-Strength Concrete (HSC) allows for better use of the high-strength properties of FRP bars. The mechanical properties of FRP bars can yield to large crack widths and deflections. As a result, the design of concrete elements reinforced with FRP materials is often governed by the Serviceability Limit States (SLS). This study investigates the short-term serviceability behavior of FRP RC I-beams. Eight RC I-beams reinforced with carbon-FRP (CFRP) and four steel RC I-beams, for comparison purposes, were tested under two-point loading.
Deformations on the concrete and crack widths and spacing are measured and

... Show More
View Publication Preview PDF
Crossref (12)
Crossref