Preferred Language
Articles
/
LhccoZIBVTCNdQwCCLs_
Experimental Investigation of Composite Circular Encased GFRP I-Section Concrete Columns under Different Load Conditions
...Show More Authors

Pultruded materials made of Fiber-Reinforced Polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, etc. FRP materials are starting to compete with steel as structural materials owing to their great resistance, low self-weight, and cheap maintenance costs, especially in corrosive conditions. This study aims to evaluate the effectiveness of a novel concrete Composite Column (CC) using Encased I-Section (EIS) as a reinforcement in contrast to traditional steel bars by using Glass Fiber-Reinforced Polymer (GFRP) as I-section (CC-EIS) to evaluate the effectiveness of the hybrid columns which have been built by combining GFRP profiles with concrete columns. To achieve the aims of this study, nine circular columns with a diameter of 150 mm and a height of 1000 mm were cast with compression strength equal to 42.4 MPa at the test day. The research involved three different types of reinforcement: Hybrid circular columns with GFRP I-section and 1% reinforcement ratio of steel bars, Hybrid circular columns with steel I-section and 1% reinforcement ratio of steel bars (the cross-section area of the I-section was the same for GFRP and for steel), and a reference column without an I-section. This study investigates the ultimate capacity, axial and lateral deformation, and failure mode of the circular columns under different loading conditions: concentric, eccentric (with eccentricities of 25 mm), and flexural loading. The results showed that the ultimate capacity of the composite columns using either encased steel I-section or GFRP I-section was higher than the traditional columns under all loading conditions. The concentric tested specimens, with steel I-section and with GFRP I-section, exceeded the ultimate strength of the reference specimen by 8.9% and 2.9%, respectively. Specimens with steel I-section and GFRP I-section achieved 11.9% and 9.7% higher ultimate strength than the reference specimens under a compression load of 25 mm eccentricity. Specimens with steel I-section and the specimens with GFRP I-section achieved ultimate strengths of 114.3% and 36.6% under flexural loading testing.

Scopus Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Flexural behavior of concrete beams with horizontal and vertical openings reinforced by glass-fiber-reinforced polymer (GFRP) bars
...Show More Authors
Abstract<p>This study conducted an analytical investigation on the behavior of concrete beams with openings reinforced by glass-fiber-reinforced polymer (GFRP) bars. In this study, five proposed beams reinforced by GFRP bars as flexural and shear reinforcement with openings were numerically examined. The variables were the opening orientation (vertical and horizontal) and the number of openings. These openings were located within the flexural zone of the proposed beams. The result shows that the vertical openings had a significant effect over the horizontal openings on reducing the ultimate load and increasing the mid-span deflection compared with the control beam. Moreover, the results showed t</p> ... Show More
View Publication
Crossref (12)
Crossref
Publication Date
Thu Jul 28 2022
Journal Name
Mechanics Based Design Of Structures And Machines
Experimental investigation on the damping characteristics in dry and saturated sands
...Show More Authors

Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Using GPR Technique Assessment for Study the Sub-Grade of Asphalt and Concrete Conditions
...Show More Authors

The Ground Penetrating Radar (GPR) is frequently used in pavement engineering
for road pavement inspection. The main objective of this work is to validate
nondestructive, quick and powerful measurements using GPR for assessment of subgrade
and asphalt /concrete conditions. In the present study, two different antennas
(250, 500 MHz) were used. The case studies are presented was carried in University
of Baghdad over about 100m of paved road. After data acquisition and radar grams
collection, they have been processed using RadExplorer V1.4 software
implementing different filters with the most effective ones (time zero adjustment and
DC removal) in addition to other interpretation tool parameters.
The interpretatio

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Agricultural Engineering
Evaluation of Flat Fan Nozzles Operating Parameters Under Conditions of Accelerated Boundary and Destructive Wear
...Show More Authors
Abstract<p>Two tests were carried out to measure the standard flat fan nozzles wear during a specific period of an accelerated wear procedure. The first test aimed at getting 10% increase in the flow rate compared to the nominal flow rate, which is the threshold to replace the nozzles according to the nozzles testing standards. The second test was to wear the nozzles intensively (100 hours of accelerated wear), which represents the use of nozzles beyond the allowed threshold. The results showed that the flow rate reached 1.31 l·min<sup>−1</sup> (equal to 10% increase) for the tested nozzles after 35 hours of the wear test. For the second test, the 10% increase of the flow rate was r</p> ... Show More
Crossref (1)
Crossref
Publication Date
Sun Jun 05 2016
Journal Name
Baghdad Science Journal
Synthesis and Characterization of Cu(I)-Folic Acid Complex A Theoretical and Experimental Study
...Show More Authors

Copper (I) complex containing folic acid ligand was prepared and characterized on the basis of metal analyses, UV-VIS, FTIR spectroscopies and magnetic susceptibility. The density functional theory (DFT) as molecular modeling calculations was used to determine the donor atoms of folic acid ligand which appear clearly at oxygen atoms binding to hydrogen. Detection of donation sights is supported by theoretical parameters such as geometry, mulliken population, mulliken charge and HOMO-LUMO gap obtained by DFT calculations.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
The Optimum Reinforcement Layer Number for Soil under the Ring Footing Subjected to Inclined Load
...Show More Authors

The primary components of successful engineering projects are time, cost, and quality. The use of the ring footing ensures the presence of these elements. This investigation aims to find the optimum number of geogrid reinforcement layers under ring footing subjected to inclined loading. For this purpose, experimental models were used. The parameters were studied to find the optimum geogrid layers number, including the optimum geogrid layers spacing and the optimum geogrid layers number. The optimum geogrid layers spacing value is 0.5B. And as the load inclination angle increased, the tilting and the tilting improvement percent for the load inclination angles (5°,10°,15°) are (40%,28%, and 5%) respectively. The reduction percent o

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
The Optimum Reinforcement Layer Number for Soil under the Ring Footing Subjected to Inclined Load
...Show More Authors

The primary components of successful engineering projects are time, cost, and quality. The use of the ring footing ensures the presence of these elements. This investigation aims to find the optimum number of geogrid reinforcement layers under ring footing subjected to inclined loading. For this purpose, experimental models were used. The parameters were studied to find the optimum geogrid layers number, including the optimum geogrid layers spacing and the optimum geogrid layers number. The optimum geogrid layers spacing value is 0.5B. And as the load inclination angle increased, the tilting and the tilting improvement percent for the load inclination angles (5°,10°,15°) are (40%,28%, and 5%) respectively. The reduction percent of the

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Journal Of Engineering
Numerical Study of Composite Concrete Castellated Double Channel Beams with Strengthening Techniques
...Show More Authors

Current numerical research was devoted to investigating the effect of castellated steel beams without and with strengthening. The composite concrete asymmetrical double hot rolled steel channels bolted back to back to obtain a built-up I-shape form are used in this study. The top half part of the steel is smaller than the bottom half part, and the two parts were connected by bolting and welding. The ABAQUS/2019 program employed the same length and conditions of loading for four models: The first model is the reference without castellated and strengthening; the second model was castellated without strengthened; the third model was castellated and strengthened with reactive powder concrete encased in the

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Engineering
Flexural Behavior of Reinforced Concrete Beams Reinforced with 3D-Textile Composite Fiber
...Show More Authors

Normal concrete is weak against tensile strength, has low ductility, and also insignificant resistance to cracking. The addition of diverse types of fibers at specific proportions can enhance the mechanical properties as well as the durability of concrete. Discrete fiber commonly used, has many disadvantages such as balling the fiber, randomly distribution, and limitation of the Vf ratio used. Based on this vision, a new technic was discovered enhancing concrete by textile-fiber to avoid all the problems mentioned above. The main idea of this paper is the investigation of the mechanical properties of SCC, and SCM that cast with 3D AR-glass fabric having two different thicknesses (6, 10 mm), and different layers (1,2 laye

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 15 2017
Journal Name
School Of Engineering
Development of novel demountable shear connectors for precast steel-concrete composite bridges
...Show More Authors

Two novel demountable shear connectors for precast steel-concrete composite bridges are presented. The connectors use high-strength steel bolts, which are fastened to the steel beam with the aid of a special locking configuration that prevents slip of bolts within their holes. Moreover, the connectors promote accelerated construction and overcome typical construction tolerances issues of precast structures. Most importantly, the connectors allow bridge disassembly, and therefore, can address different bridge deterioration scenarios with minimum disturbance to traffic flow, i.e. (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (3) steel beams can be replaced, while precast

... Show More
View Publication Preview PDF