A harvested prey-predator model with infectious disease in preyis investigated. It is assumed that the predator feeds on the infected prey only according to Holling type-II functional response. The existence, uniqueness and boundedness of the solution of the model are investigated. The local stability analysis of the harvested prey-predator model is carried out. The necessary and sufficient conditions for the persistence of the model are also obtained. Finally, the global dynamics of this model is investigated analytically as well as numerically. It is observed that, the model have different types of dynamical behaviors including chaos.
The dynamical behavior of a two-dimensional continuous time dynamical system describing by a prey predator model is investigated. By means of constructing suitable Lyapunov functional, sufficient condition is derived for the global asymptotic stability of the positive equilibrium of the system. The Hopf bifurcation analysis is carried out. The numerical simulations are used to study the effect of periodic forcing in two different parameters. The results of simulations show that the model under the effects of periodic forcing in two different parameters, with or without phase difference, could exhibit chaotic dynamics for realistic and biologically feasible parametric values.
The aim of this study is to utilize the behavior of a mathematical model consisting of three-species with Lotka Volterra functional response with incorporating of fear and hunting cooperation factors with both juvenile and adult predators. The existence of equilibrium points of the system was discussed the conditions with variables. The behavior of model referred by local stability in nearness of any an equilibrium point and the conditions for the method of approximating the solution has been studied locally. We define a suitable Lyapunov function that covers every element of the nonlinear system and illustrate that it works. The effect of the death factor was observed in some periods, leading to non-stability. To confirm the theore
... Show MoreIn this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynami
... Show MoreFear, harvesting, hunting cooperation, and antipredator behavior are all important subjects in ecology. As a result, a modified Leslie-Gower prey-predator model containing these biological aspects is mathematically constructed, when the predation processes are described using the Beddington-DeAngelis type of functional response. The solution's positivity and boundedness are studied. The qualitative characteristics of the model are explored, including stability, persistence, and bifurcation analysis. To verify the gained theoretical findings and comprehend the consequences of modifying the system's parameters on their dynamical behavior, a detailed numerical investigation is carried out using MATLAB and Mathematica. It is discovered that the
... Show MoreThis paper presents a novel idea as it investigates the rescue effect of the prey with fluctuation effect for the first time to propose a modified predator-prey model that forms a non-autonomous model. However, the approximation method is utilized to convert the non-autonomous model to an autonomous one by simplifying the mathematical analysis and following the dynamical behaviors. Some theoretical properties of the proposed autonomous model like the boundedness, stability, and Kolmogorov conditions are studied. This paper's analytical results demonstrate that the dynamic behaviors are globally stable and that the rescue effect improves the likelihood of coexistence compared to when there is no rescue impact. Furthermore, numerical simul
... Show MoreIn this paper, an ecological model with stage-structure in prey population, fear, anti-predator and harvesting are suggested. Lotka-Volterra and Holling type II functional responses have been assumed to describe the feeding processes . The local and global stability of steady points of this model are established. Finally, the global dynamics are studied numerically to investigate the influence of the parameters on the solutions of the system, especially the effect of fear and anti-predation.
In this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.
For a mathematical model the local bifurcation like pitchfork, transcritical and saddle node occurrence condition is defined in this paper. With the existing of toxicity and harvesting in predator and prey it consist of stage-structured. Near the positive equilibrium point of mathematical model on the Hopf bifurcation with particular emphasis it established. Near the equilibrium point E0 the transcritical bifurcation occurs it is described with analysis. And it shown that at equilibrium points E1 and E2 happened the occurrence of saddle-node bifurcation. At each point the pitch fork bifurcation occurrence is not happened.
In the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a
... Show More