Fire is one of the most critical risks devastating to human life and property. Therefore, humans make different efforts to deal with fire hazards. Many techniques have been developed to assess fire safety risks. One of these methods is to predict the outbreak of a fire in buildings, and although it is hard to predict when a fire will start, it is critical to do so to safeguard human life and property. This research deals with evaluating the safety risks of the existing building in the city of Samawah/Iraq and determining the appropriateness of these buildings in terms of safety from fire hazards. Twelve parameters are certified based on the National Fire Protection Association (NFPA2016) code. The concept of giving weight to each criterion was adopted to classify the criteria according to their importance and then conduct an on-site examination of these existing buildings to test the selected criteria. The result indicates a possible fire risk in these buildings due to the lack of compliance with fire safety instructions in the approved codes.
Activity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classif
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreThe purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.
Type 2 diabetes mellitus which abbreviate as T2DM is a complex endocrine and metabolic disorder arisingfrom genetic and environmental factors interaction which in turn induce various degrees of insulin functionalalteration on peripheral tissues. Globally, T2DM has develop into a public health problem. Therefore, Thestudy included (75) patients(37 female and 38 males) suffering from T2DM who visit al-kadhimiya teachinghospital with age range 20-80 years and (70) as healthy controls with age range 20-70 years. All studiedgroups were evaluated CMV IgG by ELISA,B. urea, S. Creatinine, cholesterol and triglyceride the resultsshowed that B.urea, S.creatinine and serum cholesterol showed a non-significant differences between studiedgroup,
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show MoreRoads irrespective of the type have specific standard horizontal distance measured at 90 degrees from a lot boundary to a development known as a setback. Non-observance of the recommended setbacks accommodated in any urban center’s master plan creates noise hazard to the public health and safety as the movement of vehicular traffic is not without the attendant noise. This study assessed noise intrusion level in shops along a section of Ibadan-Abeokuta road with due consideration to compliance with the recommended building structure setback. Analysis of noise descriptors evaluated in this study gave A-weighted equivalent sound pressure level average of 91.3 dBA, the daytime average sound level (LD) 92.27 dBA,
... Show MoreThe research aims at showing the effectiveness of the existing deposit facilities in the liquidity of the Iraqi banking system for the period 2010/2017. The problem of research indicates that the Iraqi banking system enjoys high liquidity levels exceeding the standard rate set by the Central Bank of Iraq amounting to 30% For an appropriate level of liquidity remains a major challenge to the management of the bank because it is a trade-off between profitability and liquidity, and also indicates the existence of funds disabled and not available for credit and investment opportunities, and based on the research hypothesis:
The existence of a significant effect of the deposit facilities existing in the liquidity of the Iraqi banking
... Show MoreConstruction is a hazardous industry with a high number of injuries. Prior research found that many industry injuries can be prevented by implementing an effective safety plan if prepared and maintained by qualified safety personnel. However, there are no specific guidelines on how to select qualified construction safety personnel and what criteria should be used to select an individual for a safety position in the United States (US) construction industry. To fill this gap in knowledge, the study goal was to identify the desired qualifications of safety personnel in the US construction industry. To achieve the study goal, the Delphi technique was used as the main methodology for determining the desired qualifications for constructio
... Show More