Background Numerous studies indicated that workers in the health sector suffer from work stress, hassles, and mental health problems associated with COVID-19, which negatively affect the completion of their job tasks. These studies pointed out the need to search for mechanisms that enable workers to cope with job stress effectively. Objectives This study investigated psychological flow, mental immunity, and job performance levels among the mental health workforce in Saudi Arabia. It also tried to reveal the psychological flow (PF) and mental immunity (MI) predictability of job performance (JP). Method A correlational survey design was employed. The study sample consisted of 120 mental health care practitioners (therapists, psychologists, counselors)who lived in Saudi Arabia. Sixty-four were men, 56 were women, and their ages ranged between 27 and 48 (36.32±6.43). The researchers developed three measurements of psychological flow, mental immunity, and job performance. After testing their validity and reliability, these measures were applied to the study participants. Results The results found median levels of psychological flow, mental immunity, and job performance among mental health care practitioners. Also, the results revealed that psychological flow and mental immunity were statistically significant predictors of job performance. The psychological flow variable contributed (38.70%) and mental immunity (54.80%) to the variance in job performance of mental health care practitioners.
The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreObjective: The study the association of procalcitonin (PCT) and c-reactive protein (CRP) levels in COVID-19 patients and it's role as a guide in progress and management of those patients. Methodology: This cross-sectional study analyzed 200 CIOVID-19 patients in a single privet center in Baghdad, Iraq from January 1, 2021 to January 1, 2022. Demographic data like age, sex, and clinical symptoms were recorded. High sensitivity CRP and PCT in the serum were measured via dry fluorescence immunoassay (Lansionbio-China). Results: Out of 200 patients, 50 had moderate Covid and 150 had severe disease. Mean serum PCT levels was 0.039±0.05 ng/mL in the moderate group (range 0.011-0.067) and 0.43±0.21 ng/mL in the severe group (range 0.21
... Show MoreBackground: The COVID-19 infection is a more recent pandemic disease all over the world and studying the pulmonary findings on survivors of this disease has lately commenced.
Objective: We aimed to estimate the cumulative percentage of whole radiological resolution after 3 months from recovery and to define the residual chest CT findings and exploring the relevant affecting factors.
Subjects and Methods: Patients who had been previously diagnosed with COVID-19 pneumonia confirmed by RT-PCR test and had radiological evidence of pulmonary involvement by Chest CT during the acute illness were included in the present study. The radiol
... Show MoreMachine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims
... Show MoreThis study discusses risk management strategies caused by pandemic-related (Covid-19) suspensions in thirty-six engineering projects of different types and sizes selected from countries in the middle east and especially Iraq. The primary data collection method was a survey and questionnaire completed by selected project crew and laborers. Data were processed using Microsoft Excel to construct models to help decision-makers find solutions to the scheduling problems that may be expected to occur during a pandemic. A theoretical and practical concept for project risk management that addresses a range of global and local issues that affect schedule and cost is presented and results indicate that the most significant delays are due to a
... Show MoreThis study discusses risk management strategies caused by pandemic-related (Covid-19) suspensions in thirty-six engineering projects of different types and sizes selected from countries in the middle east and especially Iraq. The primary data collection method was a survey and questionnaire completed by selected project crew and laborers. Data were processed using Microsoft Excel to construct models to help decision-makers find solutions to the scheduling problems that may be expected to occur during a pandemic. A theoretical and practical concept for project risk management that addresses a range of global and local issues that affect schedule and cost is presented and results indicate that the most significant delays are due to a
... Show MoreSufficient high-quality data are unavailable to describe the management approach and guideline of COVID-19 disease in pediatric and adolescent population which may be due to mild presentation in most of cases and less severe complications than older ages.
World Health Organization was concerned with the establishment of an approved guideline to manage the increasing number of COVID-19 patients worldwide aiming to prevent or lessen COVID-19 global burden.
The clinical features have a wide spectrum starting from uncomplicated mild illness, mild-moderate pneumonia, severe pneumonia, acute respiratory distress syndrome, sepsis, septic shock, and multisystem inflammatory syndrome in children.
Many important definitions
... Show MoreObjective: The study aims at evaluating the psychological support and discharge plan from the hospital provided by nurses for woman undergone hysterectomy.
Methodology: The study uses descriptive design and non-probability (convenient) sample which is consisted of (40) nurses from (8) teaching hospitals in the City of Baghdad within the maternity wards. The study is carried out from 11 November 2020 to 27 June 2021. A observational tool is developed to evaluate the psychological support and the discharge plan after surgery. Content validity and internal consistency reliability are determined through pilot study. Data are collected through the use of the questionnaire and data are analyzed through the use of descriptive and inferentia