Dam and powerhouse operation sustainability is a major concern from the hydraulic engineering perspective. Powerhouse operation is one of the main sources of vibrations in the dam structure and hydropower plant; thus, the evaluation of turbine performance at different water pressures is important for determining the sustainability of the dam body. Draft tube turbines run under high pressure and suffer from connection problems, such as vibrations and pressure fluctuation. Reducing the pressure fluctuation and minimizing the principal stress caused by undesired components of water in the draft tube turbine are ongoing problems that must be resolved. Here, we conducted a comprehensive review of studies performed on dams, powerhouses, and turbine vibration, focusing on the vibration of two turbine units: Kaplan and Francis turbine units. The survey covered several aspects of dam types (e.g., rock and concrete dams), powerhouse analysis, turbine vibrations, and the relationship between dam and hydropower plant sustainability and operation. The current review covers the related research on the fluid mechanism in turbine units of hydropower plants, providing a perspective on better control of vibrations. Thus, the risks and failures can be better managed and reduced, which in turn will reduce hydropower plant operation costs and simultaneously increase the economical sustainability. Several research gaps were found, and the literature was assessed to provide more insightful details on the studies surveyed. Numerous future research directions are recommended.
Through the history of art movements, abstraction has been rotating between appearance and disappearance, mounting and stillness while its performances differed between reduction and simplification on the one hand and between the use of chromatographic and linear abstraction on the other. As a result, to what is mentioned, abstraction has appeared in many different artistic forms underlying the systematicity of the plastic art history.However, according to a contemporary point of view that comes up with the scientific revolution, the art of optical deceiving (illusion) appeared to find a hybrid art form that locates between the geometricity of abstraction and the scientific, visual and psychological foundations that are linked with the i
... Show MoreThe Hbl toxin is a three-component haemolytic complex produced by Bacillus cereus sensu lato strains and implicated as a cause of diarrhoea in B. cereus food poisoning. While the structure of the HblB component of this toxin is known, the structures of the other components are unresolved. Here, we describe the expression of the recombinant HblL1 component and the elucidation of its structure to 1.36 Å. Like HblB, it is a member of the alpha-helical pore-forming toxin family. In comparison to other members of this group, it has an extended hydrophobic beta tongue region that may be involved in pore formation. Molecular docking was used to predict possible interactions between HblL1 and HblB, and suggests a head to tail dimer might f
... Show MoreComputer simulations were carried out to investigate the dependence of the main perturbation parameters (Sun and Moon attractions, solar radiation pressure, atmosphere drag, and geopotential of Earth) on the orbital behavior of satellite. In this simulation, the Cowell method for accelerations technique was adopted, the equation of motion with perturbation was solved by 4th order Runge-Kutta method with step (1/50000) of period to obtain the state vectors for position and velocity. The results of this simulation have been compared with data that available on TLEs (NORD data in two line elements). The results of state vectors for satellites (Cartosat-2B, Gsat-14 an
Receipt date:6/3/2021 acceptance date:4/5/2021 Publication date:31/31/2021
This work is licensed under a Creative Commons Attribution 4.0 International License.
The research in the role of variables contact for non-state actors have become more influential in the current of contemporary events, that related with the reality of seeking services and providing all of that in favor of maintaining the social peace, and ensuring its empowerment in order to make peace and stability outcomes as a real fa
... Show MoreThe current research deals with the specificity of the interior design of the classes of art education in the schools of excellence for the province of Muthanna and its center of the city of Samawah. In the first chapter، the problem of research was determined by the lack of internal spaces of the classes of art education to designs that meet the requirements and needs of students in these educational stages. The importance of the research in being an addition to knowledge in the field of interior design and engineering department of the general directorates of the Ministry of Education. The objectives of the research were determined through.
- Identifying the reality of the halls of art education for sch
The Bi2Se3 compound was synthesis by fusing initial compounds consisting of
extra pure elements in stoichiometric ratio from elements compound, charged inside
quartz ampoule. The crystal growth of Bi2Se3 carried out using Brighaman technique
process from melting f (Bi+Se ) at temperature of 810 ºC for about 48 hrs. Single crystal
of Bi2Se3 has been grown in direction (211) after slow cooling on account of heat
gradient to zone furnaces at cooling rate (1-3) C/hr. The structure study of the compound
was determined by x-ray diffraction technique, which it has bismuthinite structure and
orthorhombic unit cell with lattice parameters of a=10.2678 Å, b=11.2392 Å and
c=5.1737 Å
This work was conducted to study the oxidation of phenol in aqueous solution using copper based catalyst with zinc as promoter and different carrier, i.e. γ-Alumina and silica. These catalysts were prepared by impregnation method.
The effect of catalyst composition, pH (5.6-9), phenol to catalyst concentration ratio (2-0.5), air feed rate (30-50) ml/s, stirring speed (400-800) rpm, and temperature (80-100) °C were examined in order to find the best conditions for phenol conversion.
The best operating conditions which lead to maximum phenol conversion (73.1%) are : 7.5 pH, 4/6 phenol to catalyst concentration, 40 ml/s air feed rate, 600 rpm stirring speed, and 100 °C reaction temperature. The reaction involved an induction period