The advent of UNHCR reports has given rise to the uniqueness of its distinctive way of image representation and using semiotic features. So, there are a lot of researches that have investigated UNHCR reports, but no research has examined images in UNHCR reports of displaced Iraqis from a multimodal discourse perspective. The present study suggests that the images are, like language, rich in many potential meanings and are governed by clearly visual grammar structures that can be employed to decode these multiple meanings. Seven images are examined in terms of their representational, interactional and compositional aspects. Depending on the results, this study concludes that the findings support the visual grammar theory and highlight the value of images as semiotic resources in conveying multi-layered meanings. Applying Kress and Van Leeuwen"s (2006) Multimodal Discourse Analysis (MDA) of analyzing the images in UNHCR reports on the displaced Iraqis succeed in revealing their semiotic structures. The analysis of the selected images shows various relations existed between the participants and the viewers on the visual level through employing different visual modes.
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreIn this work, a novel design for the NiO/TiO2 heterojunction solar cells is presented. Highly-pure nanopowders prepared by dc reactive magnetron sputtering technique were used to form the heterojunctions. The electrical characteristics of the proposed design were compared to those of a conventional thin film heterojunction design prepared by the same technique. A higher efficiency of 300% was achieved by the proposed design. This attempt can be considered as the first to fabricate solar cells from highly-pure nanopowders of two different semiconductors.
Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreThis paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreSustainable vegetative management plays a significant role in improving soil quality in degraded agricultural landscapes by enhancing soil microbial biomass. This study investigated the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), and agroforestry buffers (ABs) on soil microbial biomass and soil organic C (SOC) compared with continuous corn (
Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreThe risk of significant concern is resistance to antibiotics for public health. The alternative treatment of metallic nanoparticles (NPs), such as heavy metals, effects on antibiotic resistance bacteria with different types of antibiotics of - impossible to treat using noval eco-friendly synthesis technique nanoparticles copper oxide (CuO NPs) preparation from S. epidermidis showed remarkable antimicrobial activity against S.aureus Minimum inhibitory concentra range (16,32,64,256,512) µg/ml via well diffusion method in vitro, discover those concentrations effected in those bacteria and the best concentration is 64 µg/ml, characterization CuO NPs to prove this included atomic force microscope, UV, X-ray Diffraction and TEM, and ant
... Show MoreProtecting information sent through insecure internet channels is a significant challenge facing researchers. In this paper, we present a novel method for image data encryption that combines chaotic maps with linear feedback shift registers in two stages. In the first stage, the image is divided into two parts. Then, the locations of the pixels of each part are redistributed through the random numbers key, which is generated using linear feedback shift registers. The second stage includes segmenting the image into the three primary colors red, green, and blue (RGB); then, the data for each color is encrypted through one of three keys that are generated using three-dimensional chaotic maps. Many statistical tests (entropy, peak signa
... Show MoreThe relationship between the elements of the climate and the productivity of citrus (kg
/ tree) in the province of Karbala has been determined through the use of simple correlation
coefficient of Pearson (rp) and (t) test. The result for each of oranges, limes and tangerine had
all shown moral and relevant statistical indications; except for relative humidity, which were
not linked to a moral relationship with productivity of tangerine, oranges and limes.As for the
relationship between climatic factors and yield of bitter orange were all not significant
statistically and very weak.
In order to determine the strength of the correlation between fluctuations in the
climatic elements and fluctuations in the productivi