A new Schiff base [1-((2-(1H-indol-3-yl)ethylimino)methyl)naphthalene-2-ol] (HL) has been synthesized by condensing (2-hydroxy-1-naphthaldehyde) with (2-(1H-indol-3-yl)ethylamine). In turn, its transition metal complexes were prepared having the general formula; [Pt(IV)Cl2(L)2], [Re(V)Cl2(L)2]Cl and [Pd(L)2], 2K[M(II)Cl2(L)2] where M(II) = Co, Ni, Cu] are reported. Ligand as well as metal complexes are characterized by spectroscopic techniques such as FT-IR, UV-visible, 13C & 1H NMR, mass, elemental analysis. The results suggested that the ligand behaves like a bidentate ligand for all the synthesized complexes. On the other hand, theoretical studies of the ligand as well its metal complexes were conducted at gas phase using HyperChem 8.0. These metal complexes exhibited good antibacterial activity.
Complexes of Au(III) ,Pd (II) , Pt (IV ) and Rh(III) with S – propynyle -2- thiobenzimidazole (BENZA) have been prepared and characterized by IR and UV- Visible spectral methods in addition to magnetic and conductivity measurements and micro – elemental analysis (CHN).The probable structures of the new complexes have been suggested.
To evaluate the Interaction of Mn(II), Fe(II), Co(II), Ni(II),Cu(II), Zn(II) And Cd(II) Mixed- Ligand Complexes of cephalexin mono hydrate (antibiotics) And Furan-2-Carboxylic Acid To The Different DNA Sources. All the metal complexes were observed to cleave the DNA. A difference in the bands of complexes .The cleavage efficiency of the complexes compared with that of the control is due to their efficient DNA-binding ability and the other factors like solubility and bond length between the metal and ligand may also increase the DNA-binding ability. The ligands (Cephalexin mono hydrate (antibiotics) and Furan-2- Carboxylic acid and there newly synthesized metal complexes shows good antimicrobial activities and Binding DNA , thus, can be used
... Show MoreComplexes of Au (III), Pd (II), Pt (IV ) and Rh(III) with S–propynyle-2- thiobenzimidazole (BENZA) have been prepared and characterized by IR and UV- Visible spectral methods in addition to magnetic and conductivity measurements and micro–elemental analysis (CHN).The probable structures of the new complexes have been suggested.
The impact of a Schiff base namely 2-((thiophen-2-ylmethylene)amino)benzenethiol to corrode mild steel in 1 M HCl resolved was evaluated using different weight loss technique and scanning electron microscopy (SEM).different weight measurements to expand that the 2-((thiophen-2-ylmethylene) amino) benzenethiol inhibits the corrosion of mild steel through adsorbing of top for mild steel and block the active locality. The inhibitive impacts of 2-((thiophen-2-ylmethylene)amino)benzenethiol increase with increasing concentration and decrease with increasing temperature. SEM to checking revealed that the alloy surface was quite unaffected and formed protective film on its surface. The investigated
... Show MoreNumerous integral and local electron density’s topological parameters of significant metal-metal and metal-ligand bonding interactions in a trinuclear tetrahydrido cluster [(Cp* Ir) (Cp Ru)2 (μ3-H) (μ-H)3]1 (Cp = η5 -C5Me5), (Cp* = η5 -C5Me4Et) were calculated and interpreted by using the quantum theory of atoms in molecules (QTAIM). The properties of bond critical points such as the delocalization indices δ (A, B), the electron density ρ(r), the local kinetic energy density G(r), the Laplacian of the electron density ∇2ρ(r), the local energy density
... Show MoreThis paper presents the synthesis and study of some new mixed-liagnd complexes containing tow amino acids[Alanine(Ala) and phenylalanine (phe)] with some metals . The results products were found to be solid crystalline complexes which have been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity and solubilty The proposed structure of the complexes using program , chem office 3D(2000) . The general formula have been given for the prepared complexes : [M(A-H)(phe-H)] M(II): Hg , Mn ,Co , Ni , Cu ) , Zn , Cd(II) . Ala = Alanine acid = C3H7NO2 Phe = phenylalanine = C9H11NO2
Thispaperpresentsthesynthesisandstudyofsomenewmixed-liagnd complexescontainingtowaminoacids[Alanine(Ala)andphenylalanine(phe)]withsome metals .Theresultsproductswerefoundtobesolidcrystallinecomplexeswhichhave been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity and solubiltyThe proposed structure of the complexes using program , chem office 3D(2000) .The general formula have been given for the prepared complexes :[M(A-H)(phe-H)]M(II): Hg , Mn ,Co , Ni , Cu ) , Zn , Cd(II) .Ala = Alanine acid = C3H7NO2Phe = phenylalanine = C9H11NO2
This paper presents the synthesis and study of some new mixed-ligand complexes containing anthranilic acid and amino acid phenylalanine (phe) with some metals . The resulting products were found to be solid crystalline complexes which have been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity . The proposed structure of the complexes using program , chem office 3D(2000) . The general formula have been given for the prepared complexes : [M(A-H)(phe-H)] M(II): Hg(II) , Mn(II) ,Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) . A = Anthranilic acid = C7H7NO2 Phe = phenylalanine = C9H11NO2
In this study, the preparation and characterization of hyacinth plant /chitosan composite, as a heavy metal removal, were done. Water hyacinth plant (Eichhorniacrasspes) was collected from Tigris river in Baghdad. The root and shoot parts of plant were ground to powder. Composite materials were prepared at different ratios of plant part (from 2.9% to 30.3%, wt /wt) which corresponds to (30-500mg) of hyacinth plant (root and shoot) and chitosan. The results showed that all examined ratios of plant parts have an excellent absorption to copper (Cu (II)). Moreover, it was observed that 2.9% corresponds (30mg) of plant root revealed highest removal (82.7%) of Pb (II), while 20.23% of shoot removed 61% of Cd (II) within 24 hr
... Show More