Reservoir rock typing integrates geological, petrophysical, seismic, and reservoir data to identify zones with similar storage and flow capacities. Therefore, three different methods to determine the type of reservoir rocks in the Mushrif Formation of the Amara oil field. The first method represents cluster analysis, a statistical method that classifies data points based on effective porosity, clay volume, and sonic transient time from well logs or core samples. The second method is the electrical rock type, which classifies reservoir rocks based on electrical resistivity. The permeability of rock types varies due to differences in pore geometry, mineral composition, and fluid saturation. Resistivity data are usually obtained from well logs, and resistivity logs are available. The third method is the storage capacity of rocks. The focus is on the ability of rocks to store liquids, especially hydrocarbons. This method analyzes porosity, permeability, and pore size distribution data. After that, we compared the previous three methods to identify the types of rocks and determine the best method. In the first method (Cluster Analysis), three types of rocks were identified (Bad, Moderate, and Good). In the second method, electrical rock type (ERT), four types of rocks were identified (Bad, Moderate, Good, and Very good). Then, the third method (Storage Capacity) came and enhanced the results of the second method, so the second method is considered the best and most accurate method determining the types of rocks.
Asphaltene is a component class that may precipitate from petroleum as a highly viscous and sticky material that is likely to cause deposition problems in a reservoir, in production well, transportation, and in process plants. It is more important to locate the asphaltene precipitation conditions (precipitation pressure and temperature) before the occurring problem of asphaltene deposition to prevent it and eliminate the burden of high treatment costs of this problem if it happens. There are different models which are used in this flow assurance problem (asphaltene precipitation and deposition problem) and these models depend on experimental testing of asphaltene properties. In this study, the used model was equation of
... Show More
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreThis study utilizes streamline simulation to model fluid flow in the complex subsurface environment of the Mishrif reservoir in Iraq's Buzurgan oil field. The reservoir faces challenges from high-pressure depletion and a substantial increase in water cut during production, prompting the need for innovative reservoir management. The primary focus is on optimizing water injection procedures to reduce water cuts and enhance overall reservoir performance. Three waterflooding tactics were examined: normal conditions without injectors or producers, normal conditions with 30 injectors and 80 producers and streamline simulation using the frontsim simulator. Three main strategies were employed to streamline water injection in targeted areas.
... Show MoreSadi formation is one of the main productive formations in some of Iraqi oil fields. This formation is characterized by its low permeability values leading to low production rates that could be obtained by the natural flow.
Thus, Sadi formation in Halfaya oil field has been selected to study the success of both of "Acid fracturing" and "Hydraulic fracturing" treatments to increase the production rate in this reservoir.
In acid fracturing, four different scenarios have been selected to verify the effect of the injected fluid acid type, concentration and their effect on the damage severity along the entire reservoir.
The reservoir damage severity has been taken as "Shallow–Medium– Sever
... Show MoreThe Jeribe Formation, the Jambour oil field, is the major carbonate reservoir from the tertiary reservoirs of the Jambour field in northern Iraq, including faults. Engineers have difficulty organizing carbonate reserves since they are commonly tight and heterogeneous. This research presents a geological model of the Jeribe reservoir based on its facies and reservoir characterization data (Permeability, Porosity, Water Saturation, and Net to Gross). This research studied four wells. The geological model was constructed with the Petrel 2020.3 software. The structural maps were developed using a structural contour map of the top of the Jeribe Formation. A pillar grid model with horizons and layering was designed for each zone. Followin
... Show MoreThe risk assessment for three pipelines belonging to the Basra Oil Company (X1, X2, X3), to develop an appropriate risk mitigation plan for each pipeline to address all high risks. Corrosion risks were assessed using a 5 * 5 matrix. Now, the risk assessment for X1 showed that the POF for internal corrosion is 5, which means that its risk is high due to salinity and the presence of CO, H2S and POF for external corrosion is 1 less than the corrosion, while for Flowline X2 the probability of internal corrosion is 4 and external is 4 because there is no Cathodic protection applied due to CO2, H2S and Flowline X3 have 8 leaks due to internal corrosion so the hazard rating was very high 5 and could be due to salinity, CO2, fluid flow rate
... Show MoreThis study is concerned with making comparison in using different geostatistical methods for porosity distribution of upper shale member - Zubair formation in Luhais oil field which was chosen to study.
Kriging, Gaussian random function simulation and sequential Gaussian simulation geostatistical methods were adopted in this study. After preparing all needed data which are contour map, well heads of 12 wells, well tops and porosity from CPI log. Petrel software 2009 was used for porosity distribution of mentioned formation in methods that are showed above. Comparisons were made among these three methods in order to choose the best one, the comparing cri