larization modulation plays an important role in polarization encoding in quantum key distribution. By using polarization modulation, quantum key distribution systems become more compact and more vulnerable as one laser source is used instead of using multiple laser sources that may cause side-channel attacks. Metasurfaces with their exceptional optical properties have led to the development of versatile ultrathin optical devices. They are made up of planar arrays of resonant or nearly resonant subwavelength pieces and provide complete control over reflected and transmitted electromagnetic waves opening several possibilities for the development of innovative optical components. In this work, the Si nanowire metasurface grating polarizer is designed by COMSOL Multiphysics Software to operate in the visible region and transmit the transverse magnetic polarization of light. The same structure can be rotated by different angles, i.e., 90o, 45o, and -45oto mimic the function of polarization modulation in quantum key distribution systems. The designed structure has an extinction ratio of ~ 60000 and a wide angular tolerance range of (-20o-20o).Space Size 1
Beta Distribution
Abstract
Gamma and Beta Distributions has very important in practice in various areas of statistical and applications reliability and quality control of production. and There are a number of methods to generate data behave on according to these distribution. and These methods bassic primarily on the shape parameters of each distribution and the relationship between these distributions and their relationship with some other probability distributions. &nb
... Show MoreA fast laser texturing technique has been utilized to produce micro/nano surface textures in Silicon by means of UV femtosecond laser. We have prepared good absorber surface for photovoltaic cells. The textured Silicon surface absorbs the incident light greater than the non-textured surface. The results show a photovoltaic current increase about 21.3% for photovoltaic cell with two-dimensional pattern as compared to the same cell without texturing.
The present work describes the development of code for trim and longitudinal stability analysis of a helicopter in forward flight. In general, particular use of these codes can be made for parametric investigation of the effects of the external and internal systems integrated to UH-60 helicopters. A forward flight longitudinal dynamic stability code is also developed in the work to solve the longitudinal part of the whole coupled matrix of equations of motion of a helicopter in forward flight. The coupling is eliminated by linearization. The trim analysis results are used as inputs to the dynamic stability code. The forward flight stability code is applied to UH-60 helicopter.
Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software. The aim of this research is to study experimentally and numerically, the beha
... Show More
Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software.
The aim of this research is to study experime
... Show MoreQuantum calculations on the most stable structure were carried
out for calculating the electronic properties, energies and the charge
density at the Carbon and Hydrogen atoms by Semi-empirical
method (PM3) of zigzag carbon nano tube CNT (9,0) (SWCNTs), at
the equilibrium geometry depending on the pictures of Zigzag
CNT(9,0) which was found to has D3d symmetry point group by
applying for (Gaussian 2003) program. In this work the results
include calculation the relation for axial bonds length, which are the
vertical C-C bonds (annular bonds) in the rings and bonds length
which are in the outer ring that called the circumferential bonds. Also
include a different kind of vibration modes like breathing, puckering
Considerable amounts of domestic and industrial wastewater that should be treated before reuse are discharged into the environment annually. Electrocoagulation is an electrochemical technology in which electrical current is conducted through electrodes, it is mainly used to remove several types of wastewater pollutants, such as dyes, toxic materials, oil content, chemical oxygen demand, and salinity, individually or in combination with other processes. Electrocoagulation technology used in hybrid systems along with other technologies for wastewater treatment are reviewed in this work, and the articles reviewed herein were published from 2018 to 2021. Electrocoagulation is widely employed in integrated systems with other electrochemical tech
... Show MoreThe present study explores numerically the energy storage and energy regeneration during Melting and Solidification processes in Phase Change Materials (PCM) used in Latent Heat Thermal Energy Storage (LHTES) systems. Transient two-dimensional (2-D) conduction heat transfer equations with phase change have been solved utilizing the Explicit Finite Difference Method (FDM) and Grid Generation technique. A Fortran computer program was built to solve the problem. The study included four different Paraffin's. The effects of container geometrical shape, which included cylindrical and square sections of the same volume and heat transfer area, the container volume or mass of PCM, variation of mass flow rate of heat transfer fluid (HTF), and temp
... Show More