Preferred Language
Articles
/
LRa11ocBVTCNdQwCwWrN
Theoretical calculation of the electronic current at N3 contact with TiO2 solar cell devices

(3) (PDF) Theoretical calculation of the electronic current at N3 contact with TiO2 solar cell devices. Available from: https://www.researchgate.net/publication/362780274_Theoretical_calculation_of_the_electronic_current_at_N3_contact_with_TiO2_solar_cell_devices [accessed May 01 2023].

Crossref
View Publication
Publication Date
Mon Oct 25 2021
Journal Name
Iraqi Journal Of Science
Evaluation of the Performance of Silicon Solar Cell with Fresnel Lens as Photovoltaic Solar Concentrator

     In this paper, the performance of a silicon cell with a Fresnel lens (FL) for building a solar photovoltaic concentrator system was evaluated; the solar concentrator is a Fresnel lens, which is a point concentrator made of  polymethyl-methacrylate (PMMA) as a thin lens for the optics system.

As the radiation from the sun on the solar cell is concentrated to the levels of solar radiation  of 750, 1300, 1930, 2600, 4250, 7250, and 10500) W/m2, the work was conducted at the midday in summer weather conditions, with ambient temperatures ranging 40-45 °C. The evaluation was performed in three cases; each case was conducted in succession. The performance of the cell was evaluated first wit

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Theoretical Estimation of Electronic Flow Rate at Al-TiO<sub>2</sub> Interfaces System
Abstract<p>The mechanism of the electronic flow rate at Al-TiO<sub>2</sub> interfaces system has been studied using the postulate of electronic quantum theory. The different structural of two materials lead to suggestion the continuum energy level for Al metal and TiO<sub>2</sub> semiconductor. The electronic flow rate at the Al-TiO2 complex has affected by transition energy, coupling strength and contact at the interface of two materials. The flow charge rate at Al-TiO2 is increased by increasing coupling strength and decreasing transition energy.</p>
Scopus (3)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Sun May 07 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Theoretical Calculation of Reorientation Energy in Metal /Semiconductor Interface

A theoretical calculation of the reorientation energy for non adiabatic electron transfer at
interface between metal and semiconductor system was carried out. The continuum outer
sphere theory of electron transfer reaction has been extensively used for electron transfer
between metal/semiconductor interface .It is found that in these calculations the reorientation
energy is proportional to the optical and statistical dielectric constant of semiconductor ,
properties of metal ,and the distance between metal and semiconductor .Results of
reorientation energy show that ZnO semiconductor with metal Au possess a good matching as
compared with ZnS and ZnSe . Theoretical calculation showed a good agreement with
ex

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 01 2022
Journal Name
Minar International Journal Of Applied Sciences And Technology
INVESTIGATION OF THE DENSITY OF STATE PROBABILITY FOR FE METAL CONTACT TO TIO2 SEMICONDUCTOR SYSTEM

In this paper, the density of state (DOS) at Fe metal contact to Titanium dioxide semiconductor (TiO2) has been studied and investigated using quantum consideration approaches. The study and calculations of (DOS) depended on the orientation and driving energies. was a function of TiO2 and Fe materials' refractive index and dielectric constant. Attention has focused on the effect of on the characteristic of (DOS), which increased with the increasing of refractive index and dielectric constant of Fe metal and vice versa. The results of (DOS) and its relation with and values of system have been discussed. As for contact system is increased, (DOS) values increased at first, but the relation is disturbed later and transforms into an inve

... Show More
Crossref
View Publication
Publication Date
Sat Jan 12 2013
Journal Name
International Journal Of Advanced Research In Engineering And Technology (ijaret)
FABRICATION OF AGAL/SI SOLAR CELL

The structural, optical and photoelectrical properties of fabricated diffusion heterojunction (HJ) solar cell, from n-type c-Si wafer of [400] direction with Boron, has been studied. AgAl alloys was used because of its properties that affect as a good connection materials. TiO2 has been used as a reflecting layer to increase the absorption radiation. The HJ has direct allowed energy gap equal to 3.1 eV. The c-Si/B HJ solar cell yielded has an active area conversion efficiency of 16.4% with an open circuit voltage of (Voc) 0.592V, short circuit current (Isc) of 2.042mA, fill factor (F.F) of 0.682 and % =10.54.

Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
American Institute Of Physics
Fabrication of AgInSe2 heterojunction solar cell

Abstract. Silver, Indium Selenium thin film with a thickness (5001±30) nm, deposited by thermal evaporation methods at RT and annealing3temperature (Ta=400, 500 and 600) K on a substrate of glass to study structural and optical properties of thin films and on p-Si wafer to fabricate the AgInSe2/p-Si heterojunction solar cell. XRD analysis shows that the AgInSe2 (AIS) deposited film at RT and annealing3temperature (Ta=400, 500 and 600) K have polycrystalline structure. The average grain size has been estimated from AFM images. The energy gap was estimated from the optical transmittance using a spectrometer type (UV.-Visible 1800 spectra photometer). From I-V characterization , the photovoltaic parameters such as, open-circuit voltage, short

... Show More
Scopus (2)
Scopus
Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Manufacturing an Organic Solar Cell and Comparing with Different Dyes

A solar cell was manufactured from local materials and was dyed using dyes extracted from different organic plants. The solar cell glass slides were coated with a nano-porous layer of Titanium Oxide and infused with two types of acids, Nitric acid and Acetic acid. The organic dyes were extracted from Pomegranate, Hibiscus, Blackberry and Blue Flowers. They were then tested and a comparison was made for the amount of voltage they generate when exposed to sunlight. Hibiscus sabdariffa extract had the best performance parameters; also Different plants give different levels of voltage.

Crossref
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees19gr
Scopus (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Oct 26 2021
Journal Name
Iraqi Journal Of Science
Theoretical Study for the Calculation of Proton Range in Human Body Tissues

     The main rationale for using charged particles in radiation therapy is the strong rise of energy loss (deposited dose) with maximum penetration depth ( Bragg peak) and rapid dose deposited  behind the peak. Thus, a large dose can be  applied to a deep seated tumor, with saving the surrounding normal tissues . Proton radiotherapy is nowadays an established method in the management of cancer diseases, although its availability is still limited to a few specialized centers. In this study, the range and the stopping power for proton interaction  in the skeleton  and intestine tissues, for an energy range from 0.01 to 300 MeV, was studied. The numerical calculations and analyses of Bethe&nbs

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Dec 11 2021
Journal Name
Neuroquantology
Investigate and Calculation Electron Transfer Rate Constant in the N749 Sensitized Dye Contact to ZnSe Semiconductor

The dye–semiconductor interface between N749 sensitized and zinc semiconductor (ZnSe) has been investigated and studied according to quantum transition theory with focusing on the electron transfer processes from the N749 sensitized (donor) to the ZnSe semiconductor (acceptor). The electron transfer rate constant and the orientation energy were studied and evaluated depended on the polarity of solvents according to refractive index and dielectric constant coefficient of solvents and ZnSe semiconductor. Attention focusing on the influence of orientation energies on the behavior of electron transfer rate constant. Differentdata of rate constant was discussion with orientation energy and effective driving energy for N749-ZnSe system.

... Show More
Crossref (3)
Crossref
View Publication