(3) (PDF) Theoretical calculation of the electronic current at N3 contact with TiO2 solar cell devices. Available from: https://www.researchgate.net/publication/362780274_Theoretical_calculation_of_the_electronic_current_at_N3_contact_with_TiO2_solar_cell_devices [accessed May 01 2023].
In this work silicon solar cell has been used with semicircular grooves to improve its efficiency by reducing reflection of rays and increasing optical path through the cell. Software program for optical design (zemax) has been used by ray tracing mode to evaluate prototype efficiency when using detector beneath the cell. The prototype has aspect ratio (A.R=0.2) which is the best efficiency at incident angle (ϴ=0ͦ) and the best acceptance angle (ϴ=50ͦ).
CdO:NiO/Si solar cell film was fabricated via deposition of CdO:NiO in different concentrations 1%, 3%, and 5% for NiO thin films in R.T and 723K, on n-type silicon substrate with approximately 200 nm thickness using pulse laser deposition. CdO:NiO/n-Si solar cell photovoltaic properties were examined under 60 mW/cm2 intensity illumination. The highest efficiency of the solar cell is 2.4% when the NiO concentration is 0.05 at 723K.
The charge transfer at C23H17F8N8O2PRu, C44H30BF4N5O4Ru, C56H52CL5N5OOsP2 and C76H88F80N24O11P10Ru4 nitrosyl complexes are investigation and studies theoretically using the quantum consideration. Charge transfer behavior largely rely to the electric properties of nitrosyl complexes system whose depending on the main important parameters for the transmission rate constant such that: orientation transition energy, overlapping coupling coefficient, driving force energy, height barrier and Temperature T (K). Data results have been evaluated using a MATLAB program. Results show that rate of charge transfer increases due to increases the orientation transition energy.
In this paper, a theoretical study was introduced to discussion the Influence of donor senstizer on efficiency of solar cell with clear focusing on dye senstized solar cell DSSCs applications was presented. Use of donor as -sensitizer dye in solar cells was a viable contender in photovoltaics due to their spectrum of excited state to transfer more elkectrons to conduction band of semiconductor .In this study, two systems Alq3/ZnO and D149/ZnO devices taken with same two solvents .Transtion energy ,coupling strength and transtion parameters are used to calculate the electron current density , it uses to calculate the photovoltic characteristic I-V ,fill factor and the efficiency of th
... Show MoreSolar cells thin films were prepared using polyvinyl alcohol (PVA) as a thin film, with extract of natural pigment from local flower. A concentration of 0.1g/ml of polyvinyl alcohol solution in water was prepared for four samples, with various concentrations of plant pigment (0, 15, 25 and 50) % added to each of the four solutions separately for preparing (PVA with low concentrated dye , PVA with medium concentrated dye and PVA with high concentrated dye ) thin films respectively . Ultraviolet absorption regions were obtained by computerized UV-Visible (CECIL 2700). Optical properties including (absorbance, reflectance, absorption coefficient, energy gap and dielectric constant) via UV- Vis were tested, too. Fourier transform infra
... Show MoreSolar energy usage in Iraq is facing many issues; one of those is the accumulation “of the dust on the surface of the solar module which” would highly lower its efficiency. The present work study the effect of dust accumulation” on installing fixed solar modules with different inclined angles 15o, 33o, 45o, 60o. Evaluation of the solar modules performance under different circumstance conditions such as rain, wind and humidity are considered in study of dust effect on solar module performance. The results show that the lowest output average efficiencies of solar modules occurs at 15o horizontally inclined angle are 7.4% , 6.7% , 8.0% , 8.1%, and 8.4% for the cor
... Show MoreIn this research, we studied the effect of concentration carriers on the efficiency of the N749-TiO2 heterogeneous solar cell based on quantum electron transfer theory using a donor-acceptor scenario. The photoelectric properties of the N749-TiO2 interfaces in dye sensitized solar cells DSSCs are calculated using the J-V curves. For the (CH3)3COH solvent, the N749-TiO2 heterogeneous solar cell shows that the concentration carrier together with the strength coupling are the main factors affecting the current density, fill factor and efficiency. The current density and current increase as the concentration increases and the