Preferred Language
Articles
/
LRZ9b4cBVTCNdQwCgkpq
The Prediction of COVID 19 Disease Using Feature Selection Techniques
...Show More Authors
Abstract<p>COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in order to select the best features that affect the prediction of the proposed model. These are the Recursive Feature Elimination (RFE) as wrapper feature selection and the Extra Tree Classifier (ETC) as embedded feature selection. Two classification methods are applied for classifying the features vectors which include the Naïve Bayesian method and Restricted Boltzmann Machine (RBM) method. The results were 56.181%, 97.906% respectively when classifying all features and 66.329%, 99.924% respectively when classifying the best ten features using features selection techniques.</p>
Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Density - Velocity Relationship and Prediction of Lithology Variation Using Physical Analysis in Kf-4 Well of The Kifl Oil Field, Yamama Formation, South of Iraq
...Show More Authors

     The density-velocity relation is an important tool used to predict one of  these two parameters from the other. A new empirical density –velocity equation was derived in Kf-4 well at Kifl Oil Field, south of Iraq. The density was derived from Gardner equation and the results obtained were compared with the density log (ROHB) in Kl-4 well. The petrophysical analysis was used to predict the variations in lithology of Yamama Formation depending on the well logs data, such as density, gamma, and neutron logs. The physical analysis of rocks depended on the density, Vp, and Vs  values to estimate the elastic parameters, i.e. acoustic impedance (AI) and Vp/Vs ratio, to predict the lithology and hydrocarbon i

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Actas Dermo-sifiliográficas
[Artículo traducido] Dermatitis de contacto debido al incremento de las prácticas sobre higiene de manos durante la pandemia de COVID-19 entre los estudiantes de Medicina: frecuencia, conocimiento y actitud
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Thu May 05 2022
Journal Name
5g Impact On Biomedical Engineering
Wireless Techniques and Applications of the Internet of Medical Things
...Show More Authors

View Publication
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Iraqi Journal Of Physics
Design and Analysis of the Hexagonal-Shaped Antenna with Multi-Band Feature for WLAN, WiMAX, and LTE Applications
...Show More Authors

Developing and researching antenna designs are analogous to excavating in an undiscovered mine. This paper proposes a multi-band antenna with a new hexagonal ring shape, theoretically designed, developed, and analyzed using a CST before being manufactured. The antenna has undergone six changes to provide the best performance. The results of the surface current distribution and the electric field distribution on the surface of the hexagonal patch were theoretically analyzed and studied. The sequential approach taken to determine the most effective design is logical, and prevents deviation from the work direction. After comparing the six theoretical results, the fifth model proved to be the best for making a prototype. Measured results rep

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Water Quality Assessment and Total Dissolved Solids Prediction using Artificial Neural Network in Al-Hawizeh Marsh South of Iraq
...Show More Authors

The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The develope

... Show More
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Engineering/
Water quality assessment and total dissolved solids prediction using artificial neural network in Al-Hawizeh marsh south of Iraq
...Show More Authors

The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The

... Show More
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Prediction Using Artificial Neural Network of Bed Porosity and Solid Holdup in Viscous 3-Phase Inverse Fluidization
...Show More Authors

In the present investigation, bed porosity and solid holdup in viscous three-phase inverse fluidized bed (TPIFB) are determined for aqueous solutions of carboxy methyl cellulose (CMC) system using polyethylene and polypropylene as  a particles with low-density and diameter (5 mm) in a (9.2 cm) inner diameter with height (200 cm) of vertical perspex column. The effectiveness of gas velocity Ug , liquid velocity UL, liquid viscosity μL, and particle density ρs on bed porosity BP and solid holdups εg were determined. The bed porosity increases with "increasing gas velocity", "liquid velocity", and "liquid viscosity". Solid holdup decreases with increasing gas, liquid

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
Morphotectonic Analysis of Wadi Al-Batin Alluvial Fan, South of Iraq, Using Remote Sensing and GIS Techniques
...Show More Authors

This research aimed to know the tectonic activity of the Wadi Al-Batin alluvial fan using hydrological and morphotectonic analyses. Wadi Al-Batin alluvial fan is deposited from Wadi Al-Rimah in Saudi Arabia, which extended to Iraqi and Kuwait international boundaries. The longitudinal and transverse faults that characterize this region were common. The Abu- Jir-Euphrates faults have a significant impact on the region. The faults zone consists of several NW- SE trending faults running from the Rutba in western Iraq to the south along the Euphrates through Kuwait and meeting the Al-Batin fault to the Jal Al-Zor fault. The Hydromorphometric analysis of the present fan shows five watersheds having asymmetry shapes, more elongated and activi

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (3)
Scopus Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Machine Learning Based Crop Yield Prediction Model in Rajasthan Region of India
...Show More Authors

     The present study investigates the implementation of machine learning models on crop data to predict crop yield in Rajasthan state, India. The key objective of the study is to identify which machine learning model performs are better to provide the most accurate predictions. For this purpose, two machine learning models (decision tree and random forest regression) were implemented, and gradient boosting regression was used as an optimization algorithm. The result clarifies that using gradient boosting regression can reduce the yield prediction mean square error to 6%. Additionally, for the present data set, random forest regression performed better than other models. We reported the machine learning model's performance using Mea

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu May 04 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Linear Prediction of Sum of Two Poisson Process
...Show More Authors

Our goal from this work is to find the linear prediction of the sum of two Poisson process
) ( ) ( ) ( t Y t X t Z + = at the future time 0 ), ( ≥ + τ τ t Z and that is when we know the values of
) (t Z in the past time and the correlation function ) (τ βz

View Publication Preview PDF