COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in order to select the best features that affect the prediction of the proposed model. These are the Recursive Feature Elimination (RFE) as wrapper feature selection and the Extra Tree Classifier (ETC) as embedded feature selection. Two classification methods are applied for classifying the features vectors which include the Naïve Bayesian method and Restricted Boltzmann Machine (RBM) method. The results were 56.181%, 97.906% respectively when classifying all features and 66.329%, 99.924% respectively when classifying the best ten features using features selection techniques.
The utilization of artificial intelligence techniques has garnered significant interest in recent research due to their pivotal role in enhancing the quality of educational offerings. This study investigated the impact of employing artificial intelligence techniques on improving the quality of educational services, as perceived by students enrolled in the College of Pharmacy at the University of Baghdad. The study sample comprised 379 male and female students. A descriptive-analytical approach was used, with a questionnaire as the primary tool for data collection. The findings indicated that the application of artificial intelligence methods was highly effective, and the educational services provided to students were of exceptional
... Show MoreUsing remote sensing technology and modeling methodologies to monitor changes in land surface temperature (LST) and urban heat islands (UHI) has become an essential reference for making decisions on sustainable land use. This study estimates LST and UHI in Salah al-din Province to contribute to land management, Urban planning, or climate resilience in the region; as a result of environmental changes in recent years, LANDSAT Satellite Imagery from 2014- 2024 was implemented to estimate the LST and UHI indexes in Salah al-din Province, ArcGIS 10.7 was use to calculate the indices, and The normalized mean vegetation index (NDVI) was calculated as it is closely related to extracting (LST
An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification
... Show MoreIn the digital age, protecting intellectual property and sensitive information against unauthorized access is of paramount importance. While encryption helps keep data private and steganography hides the fact that data are present, using both together makes the security much stronger. This paper introduces a new way to hide encrypted text inside color images by integrating discrete wavelet transform (DWT), discrete cosine transform (DCT), and singular value decomposition (SVD), along with AES-GCM encryption, to guarantee data integrity and authenticity. The proposed method operates in the YCbCr color space, targeting the luminance (Y) channel to preserve perceptual quality. Embedding is performed within the HL subband obtained from DWT deco
... Show MoreImage quality plays a vital role in improving and assessing image compression performance. Image compression represents big image data to a new image with a smaller size suitable for storage and transmission. This paper aims to evaluate the implementation of the hybrid techniques-based tensor product mixed transform. Compression and quality metrics such as compression-ratio (CR), rate-distortion (RD), peak signal-to-noise ratio (PSNR), and Structural Content (SC) are utilized for evaluating the hybrid techniques. Then, a comparison between techniques is achieved according to these metrics to estimate the best technique. The main contribution is to improve the hybrid techniques. The proposed hybrid techniques are consisting of discrete wavel
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreEfficient and cost-effective drilling of directional wells necessitates the implementation of best drilling practices and advanced techniques to optimize drilling operations. Failure to adequately consider drilling risks can result in inefficient drilling operations and non-productive time (NPT). Although advanced drilling techniques may be expensive, they offer promising technical solutions for mitigating drilling risks. This paper aims to demonstrate the effectiveness of advanced drilling techniques in mitigating risks and improving drilling operations when compared to conventional drilling techniques. Specifically, the advanced drilling techniques employed in Buzurgan Oil Field, including vertical drilling with mud motor, managed pres
... Show MoreThe normalized difference vegetation index (NDVI) is an effective graphical indicator that can be used to analyze remote sensing measurements using a space platform, in order to investigate the trend of the live green vegetation in the observed target. In this research, the change detection of vegetation in Babylon city was done by tracing the NDVI factor for temporal Landsat satellite images. These images were used and utilized in two different terms: in March 19th in 2015 and March 5th in 2020. The Arc-GIS program ver. 10.7 was adopted to analyze the collected data. The final results indicate a spatial variation in the (NDVI), where it increases from (1666.91 𝑘𝑚2) in 2015 to (1697.01 𝑘𝑚2)) in 2020 between the t
... Show More