COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in order to select the best features that affect the prediction of the proposed model. These are the Recursive Feature Elimination (RFE) as wrapper feature selection and the Extra Tree Classifier (ETC) as embedded feature selection. Two classification methods are applied for classifying the features vectors which include the Naïve Bayesian method and Restricted Boltzmann Machine (RBM) method. The results were 56.181%, 97.906% respectively when classifying all features and 66.329%, 99.924% respectively when classifying the best ten features using features selection techniques.
COVID-19 is a pandemic disease that has a wide spectrum of symptoms from asymptomatic to severe fatal cases due to hyperactivation of the immune system and secretion of pro-inflammatory cytokines. This study aimed to assess the level and impact of interleukin (IL)-13, IL-33, and tumor necrosis factor (TNF)-α cytokines on immune responses in mild and moderate COVID-19-infected Iraqi patients. A prospective case-control study was conducted from January 2023 to January 2024; it included 80 patients infected with moderate COVID-19 infection who consulted in different private clinics and 40 healthy controls. The serum of both groups was tested for quantification of serum IL-13, IL-33, and TNF-α using the human enzyme-linked immunosorbe
... Show MoreAbstract Background: The novel coronavirus 2 (SARS?CoV?2) pandemic is a pulmonary disease, which leads to cardiac, hematologic, and renal complications. Anticoagulants are used for COVID-19 infected patients because the infection increases the risk of thrombosis. The world health organization (WHO), recommend prophylaxis dose of anticoagulants: (Enoxaparin or unfractionated Heparin for hospitalized patients with COVID-19 disease. This has created an urgent need to identify effective medications for COVID-19 prevention and treatment. The value of COVID-19 treatments is affected by cost-effectiveness analysis (CEA) to inform relative value and how to best maximize social welfare through evidence-based pricing decisions. O
... Show MoreSeventy five isolates of Saccharomyces cerevisiae were identified, they were isolated from different local sources which included decayed fruits and vegetables, vinegar, fermented pasta, baker yeast and an alcohol factory. Identification of isolates was carried out by cultural microscopical and biochemical tests. Ethanol sensitivity of the isolates showed that the minimal inhibitory concentration of the isolate (Sy18) was 16% and Lethal concentration was 17%. The isolate (Sy18) was most efficient as ethanol producer 9.36% (v/w). The ideal conditions to produce ethanol from Date syrup by yeast isolate, were evaluated, various temperatures, pH, Brix, incubation period and different levels of (NH4)2HP04. Maximum ethanol produced was 10
... Show MoreIntrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system
... Show MoreRecurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreRecently, the development of the field of biomedical engineering has led to a renewed interest in detection of several events. In this paper a new approach used to detect specific parameter and relations between three biomedical signals that used in clinical diagnosis. These include the phonocardiography (PCG), electrocardiography (ECG) and photoplethysmography (PPG) or sometimes it called the carotid pulse related to the position of electrode.
Comparisons between three cases (two normal cases and one abnormal case) are used to indicate the delay that may occurred due to the deficiency of the cardiac muscle or valve in an abnormal case.
The results shown that S1 and S2, first and second sound of the
... Show MoreThe study aims to identify the degree of appreciation for the level of digital citizenship of a sample of Palestinian university students in the governorates of Gaza, and its relationship to the level of health awareness about the emerging coronavirus (covid-19). To achieve the objectives of the study, the researcher followed a descriptive approach by applying two questionnaires; the first, which consists of 30 items, was used to measure the level of digital citizenship. The second, which consists of 19 items, was used to measure the level of health awareness. Both questionnaires were applied on a sample of 367 students who were electronically selected using the manner simple randomness. Results have shown that the degr
... Show MoreIn this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multiwavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent root-
... Show More