COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in order to select the best features that affect the prediction of the proposed model. These are the Recursive Feature Elimination (RFE) as wrapper feature selection and the Extra Tree Classifier (ETC) as embedded feature selection. Two classification methods are applied for classifying the features vectors which include the Naïve Bayesian method and Restricted Boltzmann Machine (RBM) method. The results were 56.181%, 97.906% respectively when classifying all features and 66.329%, 99.924% respectively when classifying the best ten features using features selection techniques.
Detecting the optimum layer for well placement, which requires a diverse assortment of tools and techniques, represents a significant challenge in petroleum studies due to its critical impact on minimizing drilling costs and time. This study aims to evaluate integrated geological, petrophysical, seismic, and geomechanical data to identify the optimum zones for well placement. Three different reservoirs were analyzed to account for lateral and vertical variations in reservoir properties. The integrated data from these reservoirs provides many tools for reservoir development, especially to detect appropriate well placement zones based on evaluations of reservoir and geomechanical quality. The Mechanical Earth Model (MEM) was construct
... Show MoreIn the present paper, chitosan Schiff base has been synthesized from chitosan’s reaction with the salicyldehyde. The AuNPs was manufacture by extract of onion peels as a reducing agent. The Au NPs that have been prepared were characterized through the UV-vis spectroscopy, XRD analyses and SEM microscopy. The polymer blends of the chitosan Schiff base / PVP has been prepared through using the approach of solution casting. Chitosan Schiff base / PVP Au nano-composites was prepared. Nano composites and polymer blends have been characterized by FTIR which confirm the formation of Schiff base by revealing a new band of absorption at 1651cm-1 as a result of the (C=N) imine group. SEM, DSC and TGA confirms the thermal stability of the pr
... Show MoreA simple physical technique was used in this study to create stable and cost-effective copper oxide (CuO) nanoparticles from pure copper metal using the pulsed laser ablation technique. The synthesis of crystalline CuO nanoparticles was confirmed by various analytical techniques such as particle concentration measurement using atomic absorption spectrometry (AAS), field emission scanning electron microscopy (FE-SEM), the energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to determine the crystal size and identify of the crystal structure of the prepared particles. The main characteristic diffraction peaks of the three samples were consistent. The corresponding 2θ is also consistent, and the cytotoxicity of the nanoparticles was
... Show MoreObjectives: acute kidney injury (AKI) is a serious pathophysiology side effect of rhabdomyolysis. Inflammatory mechanisms play a role in the development of rhabdomyolysis-induced AKI. Citronellol (CT) is a naturally occurring monoterpene alcohol (3,7-Dimethyl-6-often-1-ol) found in aromatic plant species' essential oils. In this study, we explored the protective effects of Citronellol on glycerol-induced AKI.
Methods: Four groups of eight mice each (n=8) were formed by randomly dividing the animals into the groups, glycerol-induced AKI model group, low-dose CT-treated group (50mg/kg), high-dose CT-treated group (100mg/kg), and control group. The renal functions of mice from all groups were evalua
... Show MoreBACKGROUND: Many genetic factors are known to be related to osteoporosis, and currently the role of the glucagon-like peptide-1 receptor (GLP-1R) gene in bone health has been studied intensively. Some variation of this gene, such as rs1042044 and rs6458093, are known to be linked to metabolic diseases and lower bone mineral density, however their specific contribution to osteoporosis remains largely unexplored. Therefore, this study was conducted to investigate the combined genotypic effect of rs1042044 and rs6458093 as a genetic risk factor for osteoporosis in postmenopausal Iraqi women.METHODS: Blood samples from 75 osteoporosis patients and 75 healthy controls, aged 45-85, were collected. DNA was extracted, and a region of GLP-1R
... Show MoreNumerical study is adapted to combine between piezoelectric fan as a turbulent air flow generator and perforated finned heat sinks. A single piezoelectric fan with different tip amplitudes placed eccentrically at the duct entrance. The problem of solid and perforated finned heat sinks is solved and analyzed numerically by using Ansys 17.2 fluent, and solving three dimensional energy and Navier–Stokes equations that set with RNG based k−ε scalable wall function turbulent model. Finite volume algorithm is used to solve both phases of solid and fluid. Calculations are done for three values of piezoelectric fan amplitudes 25 mm, 30 mm, and 40 mm, respectively. Results of this numerical study are compared with previous b
... Show More