COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in order to select the best features that affect the prediction of the proposed model. These are the Recursive Feature Elimination (RFE) as wrapper feature selection and the Extra Tree Classifier (ETC) as embedded feature selection. Two classification methods are applied for classifying the features vectors which include the Naïve Bayesian method and Restricted Boltzmann Machine (RBM) method. The results were 56.181%, 97.906% respectively when classifying all features and 66.329%, 99.924% respectively when classifying the best ten features using features selection techniques.
The study is an attempt to predict reservoir characterization by improving the estimation of petro-physical properties (porosity), through integration of wells information and 3D seismic data in early cretaceous carbonate reservoir Yamama Formation of (Abu-Amoud) field in southern part of Iraq. Seismic inversion (MBI) was used on post- stack 3 dimensions seismic data to estimate the values of P-acoustic impedance of which the distribution of porosity values was estimated through Yamama Formation in the study area. EMERGE module on the Hampson Russel software was applied to create a relationship between inverted seismic data and well data at well location to construct a perception about the distribution of porosity on the level of all uni
... Show More This research aims to identify the economic design techniques and materials that can be used in the implementation of cosmetic supplements to the spaces of the dwelling. The research relied on the descriptive and analytical approach by describing and analyzing models of design techniques and materials that can be used in the production of cosmetic supplements in the interior spaces of the dwelling.
The results of the research concluded that the beautification of the spaces of the dwelling is one of the necessary and important pieces to add aesthetic touches to the internal spaces, and that the use of economic design techniques and materials contributes to the implementation of many pieces of complementary beautification of the
This study investigates data set as satellite images of type multispectral Landsat-7, which are observed for AL_Nasiriya city, it is located in southern of Iraq, and situated along the banks of the Euphrates River. These raw data are thermal bands of satellite images, they are taken as thermal images. These images are processed and examined using ENVI 5.3 program. Consequently, the emitted Hydrocarbon is extracted, and the black body algorithm is employed. As well as, the raster calculations are performed using ArcGIS, where gas and oil features are sorted. The results are estimate and determine the oil and gas fields in the city. This study uncovers, and estimates several unexplored oil and gas fields. Whereas,
... Show MoreObjective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show MoreIn this paper, image compression technique is presented based on the Zonal transform method. The DCT, Walsh, and Hadamard transform techniques are also implements. These different transforms are applied on SAR images using Different block size. The effects of implementing these different transforms are investigated. The main shortcoming associated with this radar imagery system is the presence of the speckle noise, which affected the compression results.
Face detection is one of the important applications of biometric technology and image processing. Convolutional neural networks (CNN) have been successfully used with great results in the areas of image processing as well as pattern recognition. In the recent years, deep learning techniques specifically CNN techniques have achieved marvellous accuracy rates on face detection field. Therefore, this study provides a comprehensive analysis of face detection research and applications that use various CNN methods and algorithms. This paper presents ten of the most recent studies and illustrate the achieved performance of each method.
Background: Type two diabetic patients have higher risk of cardiovascular and periodontal disease. Furthermore, patients with more severe periodontal disease have higher incidence of cardiovascular disease. This study aimed to assess the association between periodontal health status and the risk of vascular disease in type 2 diabetic patients. Materials and Methods: One hundred type 2 diabetes mellitus patients and fifty apparently healthy males were enrolled in this study. Oral examinations conducted were; plaque Index, calculus index, gingival index, probing pocket depth, and clinical attachment level. For the assessment of vascular risk, arterial stiffness index was used. Results: According to arterial stiffness index, type 2 diabetic p
... Show MoreThe research is an attempt to investigate experimentally the influence of teacher’s errors correction and students’ errors correction on teaching English at the College of Physical Education for Women. Errors are seen as a natural way for developing any language but teachers are puzzled the way they can correct these errors. So, this research gives some idea of using two types of errors correction. The sample of the research is female students of the first year stage at the College of Physical Education for Women of the academic year 2009-2010. The whole population of the research is (94) students while the sample is (64). Thus, the sample represents 68% from the population of the research. The sample represents It is hypothesized th
... Show More