The present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) membrane for heavy metal removal from wastewater and study the factors affecting the performance of these two membranes: feed concentrations for heavy metal ions, pressure, and flow rate. The experimental results showed, heavy metals concentration in permeate increase with raise in feed concentrations, decline with increase in flow rate. The raise of pressure, heavy metals concentration decreases for RO membrane, but for NF membrane the concentration decrease and then at high pressure increase. The rejection percentage for chromium in NF and RO is 99.7% and 99.9%, for copper is 98.4% and 99.3%, for zinc is 97.9% and 99.5%, for nickel is 97.2% and 99.5% respectively. For a synthetic electroplating wastewater, the maximum recovery was 70.7% and 48.9% for NF and RO respectively.In general, polyamide nanofiltration and reverse osmosis membranes give a high efficiency for removal of chromium, copper, nickel and zinc. A mathematical model describing the process with the existence of the effect of concentration polarization was studied. The agreement between theoretical and experimental results has an accuracy ranging from 86-99.4% for NF and 93-99.9% for RO.
This investigation integrates experimental and numerical approaches to study a novel solar air heater aimed at achieving an efficient design for a solar collector suitable for drying applications under the meteorological conditions of Iraq. The importance of this investigation stems from the lack of optimal exploitation of solar energy reaching the solar collector, primarily attributable to elevated thermal losses despite numerous designs employed in such solar systems. Consequently, enhancing the thermal performance of solar collectors, particularly those employed in crop drying applications, stands as a crucial focal point for researchers within this domain. Two identical double-pass solar air heaters were designed and constructed for
... Show MoreOne of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a
... Show MoreThe current study aimed to evaluate the effect of the heavy metals copper, cadmium and cobalt when added individually, in combination and in combination on the growth and reproduction of the aquatic fungus Saprolegnia hypogyna.
In this study, polymeric composites were prepared from unsaturated polyester as a base material with glass powder (fluorescent) in different weight ratios (4, 6, 8, 10,and 11%) as a support material and after comparison before and after reinforcement of the prepared composites, an increase was found. In the values of mechanical properties (hardness, compressive strength), the shock resistance values decreased, but an increase in temperature leads to an increase in the values of shock resistance, as well as the values of compressive strength And it reduces the hardness value.
New metal ions complexes of tridentate ligand (1-((dicyclohexylamino) methyl)-3-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrzol-4-ylimino) indolin-2-one) have been synthesized and characterized by chemical-physical analysis. The ligand acts as a tridentate for the complexation reaction with all metal ions. The new complexes, possessing the general formula [M(L)Cl]Cl where M=[Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV) and Hg(II) ] ,show tetrahedral geometry. All complexes ,except Pd(II) complex which has a square planar geometry and Pt(IV) which show an octahedral geometry. The geometry of the prepared compounds has been proposed in another method theoretically by using one of the calculation molecular programs (Hype
... Show MorePurpose: studying and analyzing the nature of uncertainty as part of strategy formulation, through analyzing the uncertainty faced by managers in the modern business environment characterized by high complexity and dynamism, though developing of an idea about the uncertainty cases and how enable the mind to understand these cases.
Methodology: It was the use of inductive and analytical approach, in order to study the accumulation of knowledge towards development areas that could contribute to strengthening the strategy formulation.
Findings: Mentoring the future will not make the success for business organization but thought business organization ability to developing share mental
... Show MoreThis paper demonstrates an experimental and numerical study aimed to compare the influence of openings of different configurations on the flexural behavior of prestressed concrete rafters. The experimental program consisted of testing six simply supported prestressed concrete rafters; 5 rafters are perforated, and the other one is solid as a reference. All rafters were tested under monotonic midpoint load. The variable which has been investigated in this work was the opening’s configuration (quadrilateral or circular) with the same upper and lower chords depths. The results indicate improvement in the beam flexural behavior using the circular openings compared to the quadrilateral o
The present work considers an alternative solution for a complex configuration of rotor discs by applying Galerkin Method. The theoretical model consists of elastic shaft carrying number of discs and supported on number of journal bearings. The equation of motion was discretized to finite degree of freedom in terms of the system generalized coordinates. The various effects of the dynamical forces and moments arising from the bearing, discs and shaft were included. Rayleigh beam model is used for analyzing the shaft while the discs are considered rigid . The validity and convergence of the present analysis was carefully checked by comparing with the Finite Element solution. An example of rotor consists of three different size discs and su
... Show More