Preferred Language
Articles
/
LIboPIYBIXToZYAL0oB7
Theoretical and Experimental Study of Nanofiltration and Reverse Osmosis Membranes for Removal of Heavy Metals from Wastewater
...Show More Authors

The present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) membrane for heavy metal removal from wastewater and study the factors affecting the performance of these two membranes: feed concentrations for heavy metal ions, pressure, and flow rate. The experimental results showed, heavy metals concentration in permeate increase with raise in feed concentrations, decline with increase in flow rate. The raise of pressure, heavy metals concentration decreases for RO membrane, but for NF membrane the concentration decrease and then at high pressure increase. The rejection percentage for chromium in NF and RO is 99.7% and 99.9%, for copper is 98.4% and 99.3%, for zinc is 97.9% and 99.5%, for nickel is 97.2% and 99.5% respectively. For a synthetic electroplating wastewater, the maximum recovery was 70.7% and 48.9% for NF and RO respectively.In general, polyamide nanofiltration and reverse osmosis membranes give a high efficiency for removal of chromium, copper, nickel and zinc. A mathematical model describing the process with the existence of the effect of concentration polarization was studied. The agreement between theoretical and experimental results has an accuracy ranging from 86-99.4% for NF and 93-99.9% for RO.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Materials Science Forum
Thermophysical Properties for ZnO-Water Nanofluid: Experimental Study
...Show More Authors

This paper presents the thermophysical properties of zinc oxide nanofluid that have been measured for experimental investigation. The main contribution of this study is to define the heat transfer characteristics of nanofluids. The measuring of these properties was carried out within a range of temperatures from 25 °C to 45 °C, volume fraction from 1 to 2 %, and the average nanoparticle diameter size is 25 nm, and the base fluid is water. The thermophysical properties, including viscosity and thermal conductivity, were measured by using Brookfield rotational Viscometer and Thermal Properties Analyzer, respectively. The result indicates that the thermophysical properties of zinc oxide nanofluid increasing with nanoparticle volume f

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Desalination And Water Treatment
The removal of Pb(II) ions from aqueous solutions by immobilized (Chlorophyta) macroalgae: an equilibrium, kinetic, and desorption-regeneration study
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Materials Research Express
Thermochromic and opacity behaviors in vanadium dioxide nanofilms: a theoretical study
...Show More Authors
Abstract<p>Vanadium dioxide nanofilms are one of the most essential materials in electronic applications like smart windows. Therefore, studying and understanding the optical properties of such films is crucial to modify the parameters that control these properties. To this end, this work focuses on investigating the opacity as a function of the energy directed at the nanofilms with different thicknesses (1–100) nm. Effective mediator theories (EMTs), which are considered as the application of Bruggeman’s formalism and the Looyenga mixing rule, have been used to estimate the dielectric constant of VO<sub>2</sub> nanofilms. The results show different opacity behaviors at different w</p> ... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Materials Research Express
Thermochromic and opacity behaviors in vanadium dioxide nanofilms: a theoretical study
...Show More Authors
Abstract<p>Vanadium dioxide nanofilms are one of the most essential materials in electronic applications like smart windows. Therefore, studying and understanding the optical properties of such films is crucial to modify the parameters that control these properties. To this end, this work focuses on investigating the opacity as a function of the energy directed at the nanofilms with different thicknesses (1–100) nm. Effective mediator theories (EMTs), which are considered as the application of Bruggeman’s formalism and the Looyenga mixing rule, have been used to estimate the dielectric constant of VO<sub>2</sub> nanofilms. The results show different opacity behaviors at different w</p> ... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Materials Chemistry A
A novel approach to fabricate zeolite membranes for pervaporation processes
...Show More Authors

A method has been demonstrated to synthesise effective zeolite membranes from existing crystals without a hydrothermal synthesis step.

View Publication
Scopus (27)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Chemical Engineering Research And Design
Simultaneous studies of emulsion stability and extraction capacity for the removal of tetracycline from aqueous solution by liquid surfactant membrane
...Show More Authors

View Publication
Scopus (47)
Crossref (42)
Scopus Clarivate Crossref
Publication Date
Fri Apr 28 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Using Crushed Glass with Sand as a Single and Dual Filter Media for Removal of Turbidity from Drinking Water
...Show More Authors

View Publication
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Experimental Study of Natural Convection Heat Transfer in Confined Porous Media Heated From Side
...Show More Authors

Transient three-dimensional natural convection heat transfer due to the influences of heating from one side of an enclosure filled with a saturated porous media, whereas the opposite side is maintained at a constant cold temperature, and the other four sides are adiabatic, were investigated in the present work experimentally. Silica sand was used as a porous media saturated with distilled water filled in a cubic enclosure heated from the side,using six electrical controlled heaters, at constant temperatures of (60, 70, 80, 90, and 100oC). The inverse side cooled at a constant temperature of (24oC) using an aluminum heat exchanger, consisted of 15 channels feeded with constant temperature water. Eighty thermocouples were used to control t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Oct 06 2023
Journal Name
Journal Of Electrochemical Science And Engineering
Zinc (II) removal from simulated wastewater by electro-membrane extraction approach: Adopting an electrolysis cell with a flat sheet supported liquid membrane
...Show More Authors

The aim of this study is to utilize the electromembrane extraction (EME) system as a manner for effective removal of zinc from aqueous solutions. A novel and distinctive electrochemical cell design was adopted consisting of two glass chambers, a supported liquid membrane (SLM) housing a polypropylene flat membrane infused with 1-octanol and a carrier. Two electrodes were used, a graphite as anode and a stainless steel as cathode. A comprehensive examination of several influential factors including the choice of carrier, the applied voltage magnitude, the initial pH of the donor solution, and the initial concentration of zinc was performed, all in a concerted effort to ascertain their respective impacts on the efficiency of zinc elim

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Flotation of Chromium Ions from Simulated Wastewater Using Air Microbubbles
...Show More Authors

   A microbubble air flotation technique was used to remove chromium ions from simulated wastewater (e.g. water used for electroplating, textiles, paints and pigments, and tanning leather). Experimental parameters were investigated to analyze the flotation process and determine the removal efficiency. These parameters included the location of the sampling port from the bottom of the column, where the diffuser is located to the top of flotation column (30, 60, and 90 cm), the type of surfactant (anionic, SDS, or cationic, CTAB) and its concentration (5, 10, 15, and 20 mg/L), the pH of the initial solution (3, 5, 7, 9, and 11), the initial contaminant concentration (10, 20, 30, and 40 mg/L), the gas flow rate (0.1, 0.2, 0.3, and 0.5 L/mi

... Show More
View Publication Preview PDF
Crossref