The present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) membrane for heavy metal removal from wastewater and study the factors affecting the performance of these two membranes: feed concentrations for heavy metal ions, pressure, and flow rate. The experimental results showed, heavy metals concentration in permeate increase with raise in feed concentrations, decline with increase in flow rate. The raise of pressure, heavy metals concentration decreases for RO membrane, but for NF membrane the concentration decrease and then at high pressure increase. The rejection percentage for chromium in NF and RO is 99.7% and 99.9%, for copper is 98.4% and 99.3%, for zinc is 97.9% and 99.5%, for nickel is 97.2% and 99.5% respectively. For a synthetic electroplating wastewater, the maximum recovery was 70.7% and 48.9% for NF and RO respectively.In general, polyamide nanofiltration and reverse osmosis membranes give a high efficiency for removal of chromium, copper, nickel and zinc. A mathematical model describing the process with the existence of the effect of concentration polarization was studied. The agreement between theoretical and experimental results has an accuracy ranging from 86-99.4% for NF and 93-99.9% for RO.
Asphaltenes are a solubility class described as a component of crude oil with undesired characteristics. In this study, Sharqy Baghdad heavy oil upgrading was achieved utilizing the solvent deasphalting approach as asphaltenes are insoluble in paraffinic solvents; they may be removed from heavy crude oil by adding N-Hexane as a solvent to create deasphalted oil (DAO)of higher quality. This method is known as Solvent De-asphalting (SDA). Different effects have been assessed for the SDA process, such as solvent to oil ratio (4-16/1 ml/g), the extraction temperature (23 ºC) room temperature and (68 ºC) reflux temperature at (0.5 h mixing time with 400 rpm mixing speed). The best solvent deasphalting results were obtained at room temp
... Show MoreThis study was conducted to prepare protein concentrates from AL-Zahdidate’s pits by using alkaline methods where the chemical composition of the pits were (7.30, 1.04, 5.80, 8.68 and 77.19) % for each of the moisture, ash, protein, fat and carbohydrates respectively and the chemical composition of the concentrate protein was (6.62, 4.10, 26.70, 0.93, and 58.65) % respectively. The content of protein concentrate from the metallic elements (144.07, 25.11, 15.02, 0.49, 0.59, 0.27, 0.22 and 234.6) mg/ 100 g each of potassium, magnesium, calcium, iron, manganese, copper, zinc and phosphorus respectively. The results of SDS-PAGE showed five bands with weights molecular ranged between 11000-70000 Dalton. Give the biscuit which contain protei
... Show MoreThis work presents an investigation on the fabrication and characterization of Fe doped zeolitic imidazolate framework (ZIF-8) of 1:1 M ratio of Zn:Fe (Fe/Zn-ZIF-8) and adsorption performances of acquired materials. The synthesized Zn-ZIF-8, Fe-ZIF-8, and Fe/Zn-ZIF-8 materials were characterized for the phase structure, morphology, elemental analysis and surface area by using X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM), Energy Dispersive X-Ray (EDX), and BET surface area, respectively. The results revealed the adsorption capacity was enhanced by incorporation of Fe into ZIF-8 structure. The CR dye adsorption capacities were 287, 219, and 412 mg/g for Zn-ZIF-8, Fe-ZIF-8, and Fe/Zn-ZIF-8 adsorbers, respectivel
... Show MoreThe current research was conducted to report the synthesis of alumina powder from Iraqi kaolin. The kaolin was transformed to metakaolin by calcinations at temperature 800 °C for three hours. Then the calcined kaolin was treated with (1.5 M) from H2SO4 for 6 hours to form Al2(SO4)3.12H2O solution. The precipitate was dried at 80oC for 10 hours and calcinations at different temperatures for two hours. The samples which result was characterized by X–Ray diffraction (XRD) and X–Ray fluorescence (XRF). The results indicate to the crystalline hydrate aluminum sulfate for the sample that be as – synthesis and when calcinations at 600 oC transformed into aluminum sulfate phase. The phases of alumina which we obtain consisted of a gamma a
... Show MoreIn this study, genetic algorithm was used to predict the reaction kinetics of Iraqi heavy naphtha catalytic reforming process located in Al-Doura refinery in Baghdad. One-dimensional steady state model was derived to describe commercial catalytic reforming unit consisting of four catalytic reforming reactors in series process.
The experimental information (Reformate composition and output temperature) for each four reactors collected at different operating conditions was used to predict the parameters of the proposed kinetic model. The kinetic model involving 24 components, 1 to 11 carbon atoms for paraffins and 6 to 11 carbon atom for naphthenes and aromatics with 71 reactions. The pre-exponential Arrhenius constants and a
... Show MoreA standard theoretical neutron energy flux distribution is achieved for the triton-triton nuclear fusion reaction in the range of triton energy about ≤10 MeV. This distribution give raises an evidence to provide the global calculations including the characteristics fusion parameters governing the T-T fusion reaction.
The ground charge density distributions (CDD), elastic charge form factors and proton, charge, neutron, and matter root mean square (rms) radii for stable 40Ca and 48Ca have been calculated using single-particle radial wave functions of Woods-Saxon (WS) and harmonic-oscillator (HO) potentials. Different central potential depths are used for each subshell which is adjusted so as to reproduce the experimental single-nucleon binding energies. An excellent agreement between the calculated rms charge radii and experimental data are found for both nuclei using WS and HO potentials. The calculated proton rms radii for 40Ca are found to be in good agreement with experiment data using both WS and HO potentials while the results for 48Ca showed an ov
... Show More