Collaborative learning is a way that prepares students practically for real-world applications. Working together as teamwork to execute various writing skills is essential in most professions since it increases the level of experience. Thus, the current study aims to identify the role collaborative writing in developing students' level of performance in writing. It is qualitative in nature since the researcher depended on the extant literature in achieving the objective of the study. The researcher touched upon related theories that addressed Collaborative learning, categories, and problems .It concluded that collaborative writing increases the students’ self-confidence, self-esteem, creativity, and motivation through the interaction among students over task completion. It enables the provision of feedback between students, which enhances their vocabulary, offers them ideas, and improves their learning. Writing in groups improves students’ writing in the aspect of grammatical accuracy and vocabulary. Finally, the study came out with a number of recommendations.
A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreThe emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA
... Show MoreThis study intends to examine the efficiency of student-centered learning (SCL) through Google classroom in enhancing the readiness of fourth stage females’ pre-service teachers. The research employs a quasi-experimental design with a control and experimental group to compare the teaching readiness of participants before and after the intervention. The participants were 30 of fourth stage students at the University of Baghdad - College of Education for Women/the department of English and data were collected through observation checklist to assess their teaching experience and questionnaires to assess their perceptions towards using Google Classroom. Two sections were selected, C as a control group and D as the experimental one each with (
... Show MoreGiven the importance of possessing the digital competence (DC) required by the technological age, whether for teachers or students and even communities and governments, educational institutions in most countries have sought to benefit from modern technologies brought about by the technological revolution in developing learning and teaching and using modern technologies in providing educational services to learners. Since university students will have the doors to work opened in all fields, the research aims to know their level of DC in artificial intelligence (AI) applications and systems utilizing machine learning (ML) techniques. The descriptive approach was used, as the research community consisted of students from the University
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreThis study aims to develop a recommendation engine methodology to enhance the model’s effectiveness and efficiency. The proposed model is commonly used to assign or propose a limited number of developers with the required skills and expertise to address and resolve a bug report. Managing collections within bug repositories is the responsibility of software engineers in addressing specific defects. Identifying the optimal allocation of personnel to activities is challenging when dealing with software defects, which necessitates a substantial workforce of developers. Analyzing new scientific methodologies to enhance comprehension of the results is the purpose of this analysis. Additionally, developer priorities were discussed, especially th
... Show MoreAbstract
Black paint laser peening (bPLP) technique is currently applied for many engineering materials , especially for aluminum alloys due to high improvement in fatigue life and strength . Constant and variable bending fatigue tests have been performed at RT and stress ratio R= -1 . The results of the present work observed that the significance of the surface work hardening which generated high negative residual stresses in bPLP specimens .The fatigue life improvement factor (FLIF) for bPLP constant fatigue behavior was from 2.543 to 3.3 compared to untreated fatigue and the increase in fatigue strength at 107 cycle was 21% . The bPLP cumulative fatigue life behav
... Show MoreThis paper is dealing with an experimental study to show the influence of the geometric characteristics of the vortex generators VG son the thickness of the boundary layer (∂) and drag coefficients (CD) of the flat plate. Vortex generators work effectively on medium and high angles of attack, since they are "hidden" under the boundary layer and practically ineffective at low angles.
The height of VGs relative to the thickness of the boundary layer enables us to study the efficacy of VGs in delaying boundary layer separation. The distance between two VGs also has an effect on the boundary layer if we take into
... Show MoreABSTRACT
Metal (II) complexes of Co, Ni, Cu and Zn with cefdinir C14H13N5O5S2 derivative (L) were synthesized and identification by elemental analysis CHNS Uv-Vis, FTIR, TGA, metal analysis AA, magnetic susceptibility and conduct metric measurement. by analysis the ligand behaves as a bidentate. For the cobalt complex, Tetrahedral geometry shape was suggested, while other complexes that have nickel, copper and zinc ions were proposed as octahedral geometry shape. The experimental method was studied for prevention of corrosion carbon steel in 3.5% NaCl by using a novel Cefdinir derivations drugs. The results showed that metal complex was a strong corro
... Show More