Preferred Language
Articles
/
LBfwqZEBVTCNdQwCU5jB
Offline Signature Verification Based on Neural Network
...Show More Authors

The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group of signatures, numbering 70 images, were used. Image preprocessing steps were performed on them, and their features were extracted using the median filter. After that, the eigenvector and eigenvalue were calculated using the PCA algorithm. Then the backpropagation neural network algorithm was applied for training and testing where the performance reached 6.7995e−07 for 82 epochs and the accuracy was 99.98%.

Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Southwest Jiaotong University
A Recognition System for Subjects' Signature Using the Spatial Distribution of Signature Body
...Show More Authors

This investigation proposed an identification system of offline signature by utilizing rotation compensation depending on the features that were saved in the database. The proposed system contains five principle stages, they are: (1) data acquisition, (2) signature data file loading, (3) signature preprocessing, (4) feature extraction, and (5) feature matching. The feature extraction includes determination of the center point coordinates, and the angle for rotation compensation (θ), implementation of rotation compensation, determination of discriminating features and statistical condition. During this work seven essential collections of features are utilized to acquire the characteristics: (i) density (D), (ii) average (A), (iii) s

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
Estimation and Improvement of Routing Protocol Mobile Ad-Hoc Network Using Fuzzy Neural Network
...Show More Authors

Ad-Hoc Networks are a generation of networks that are truly wireless, and can be easily constructed without any operator. There are protocols for management of these networks, in which the effectiveness and the important elements in these networks are the Quality of Service (QoS). In this work the evaluation of QoS performance of MANETs is done by comparing the results of using AODV, DSR, OLSR and TORA routing protocols using the Op-Net Modeler, then conduct an extensive set of performance experiments for these protocols with a wide variety of settings. The results show that the best protocol depends on QoS using two types of applications (+ve and –ve QoS in the FIS evaluation). QoS of the protocol varies from one prot

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Convolutional Multi-Spike Neural Network as Intelligent System Prediction for Control Systems
...Show More Authors

The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Journal Of Engineering Science And Technology (jestec)
Influence of A River Water Quality on The Efficiency of Water Treatment Using Artificial Neural Network
...Show More Authors

Tigris River is the lifeline that supplies a great part of Iraq with water from north to south. Throughout its entire length, the river is battered by various types of pollutants such as wastewater effluents from municipal, industrial, agricultural activities, and others. Hence, the water quality assessment of the Tigris River is crucial in ensuring that appropriate and adequate measures are taken to save the river from as much pollution as possible. In this study, six water treatment plants (WTPs) situated on the two-banks of the Tigris within Baghdad City were Al Karkh; Sharq Dijla; Al Wathba; Al Karama; Al Doura, and Al Wahda from northern Baghdad to its south, that selected to determine the removal efficiency of turbidity and

... Show More
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
Tuning PID Controller by Neural Network for Robot Manipulator Trajectory Tracking
...Show More Authors

Ziegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2013
Journal Name
Thesis
User Authentication Based on Keystroke Dynamics Using Artificial Neural Networks
...Show More Authors

Computer systems and networks are being used in almost every aspect of our daily life, the security threats to computers and networks have increased significantly. Usually, password-based user authentication is used to authenticate the legitimate user. However, this method has many gaps such as password sharing, brute force attack, dictionary attack and guessing. Keystroke dynamics is one of the famous and inexpensive behavioral biometric technologies, which authenticate a user based on the analysis of his/her typing rhythm. In this way, intrusion becomes more difficult because the password as well as the typing speed must match with the correct keystroke patterns. This thesis considers static keystroke dynamics as a transparent layer of t

... Show More
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection
...Show More Authors

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural

... Show More
View Publication Preview PDF
Scopus (30)
Crossref (14)
Scopus Crossref
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
River Water Salinity Impact on Drinking Water Treatment Plant Performance Using Artificial neural network
...Show More Authors

The river water salinity is a major concern in many countries, and salinity can be expressed as total dissolved solids. So, the water salinity impact of the river is one of the major factors effects of water quality. Tigris river water salinity increase with streamline and time due to the decrease in the river flow and dam construction from neighboring countries. The major objective of this research to developed salinity model to study the change of salinity and its impact on the Al-Karkh, Sharq Dijla, Al-Karama, Al-Wathba, Al-Dora, and Al-Wihda water treatment plant along Tigris River in Baghdad city using artificial neural network model (ANN). The parameter used in a model built is (Turbidity, Ec, T.s, S.s, and TDS in)

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Mon Apr 11 2011
Journal Name
Icgst
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation
...Show More Authors

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.

Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Controller for Nonlinear CSTR System based on Identification
...Show More Authors

This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n

... Show More
View Publication Preview PDF
Crossref (2)
Crossref