The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group of signatures, numbering 70 images, were used. Image preprocessing steps were performed on them, and their features were extracted using the median filter. After that, the eigenvector and eigenvalue were calculated using the PCA algorithm. Then the backpropagation neural network algorithm was applied for training and testing where the performance reached 6.7995e−07 for 82 epochs and the accuracy was 99.98%.
In the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),
... Show MoreLiquid electrodes of domperidone maleate (DOMP) imprinted polymer were synthesis based on precipitation polymerization mechanism. The molecularly imprinted (MIP) and non-imprinted (NIP) polymers were synthesized using DOMP as a template. By methyl methacrylate (MMA) as monomer, N,Nmethylenebisacrylamide (NMAA) and ethylene glycol dimethacrylate (EGDMA) as cross-linkers and benzoyl peroxide (BP) as an initiator. The molecularly imprinted membranes were synthesis using acetophenone (APH), di-butyl sabacate (DBS), Di octylphthalate (DOPH) and triolyl phosphate (TP)as plasticizers in PVC matrix. The slopes and limit of detection of l
... Show MoreBackground: Unlike normal EEG patterns, the epileptiform abnormal pattern is characterized by different mor phologies such as the high-frequency oscillations (HFOs) of ripples on spikes, spikes and waves, continuous and sporadic spikes, and ploy2 spikes. Several studies have reported that HFOs can be novel biomarkers in human epilepsy study. S) Method: To regenerate and investigate these patterns, we have proposed three large scale brain network models (BNM by linking the neural mass model (NMM) of Stefanescu-Jirsa 2D (S-J 2D) with our own structural con nectivity derived from the realistic biological data, so called, large-scale connectivity connectome. These models include multiple network connectivity of brain regions at different
... Show MoreCyber-attacks keep growing. Because of that, we need stronger ways to protect pictures. This paper talks about DGEN, a Dynamic Generative Encryption Network. It mixes Generative Adversarial Networks with a key system that can change with context. The method may potentially mean it can adjust itself when new threats appear, instead of a fixed lock like AES. It tries to block brute‑force, statistical tricks, or quantum attacks. The design adds randomness, uses learning, and makes keys that depend on each image. That should give very good security, some flexibility, and keep compute cost low. Tests still ran on several public image sets. Results show DGEN beats AES, chaos tricks, and other GAN ideas. Entropy reached 7.99 bits per pix
... Show MoreThe historical center's landscape suffers from neglect, despite their importance and broad capabilities in enhancing the cultural value of the historical center, as landscape includes many heterogeneous human and non-human components, material and immaterial, natural and manufactured, also different historical layers, ancient, modern and contemporary. Due to the difference in these components and layers, it has become difficult for the designer to deal with it. Therefore, the research was directed by following a methodology of actor-network theory as it deals with such a complex system and concerned with an advanced method to connect the various components of considering landscape as a ground that can include various elements and deal wi
... Show MoreIn this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images. So, this study aimed at testing the system performance at poo
... Show MoreIn this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images.
So, this study aimed at testing the system performance at poor s
... Show MoreThe parameter and system reliability in stress-strength model are estimated in this paper when the system contains several parallel components that have strengths subjects to common stress in case when the stress and strengths follow Generalized Inverse Rayleigh distribution by using different Bayesian estimation methods. Monte Carlo simulation introduced to compare among the proposal methods based on the Mean squared Error criteria.
Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show More