This research focuses on the synthesis of carbon nanotube (CNT) and Poly(3-hexylthiophene) (P3HT) (pristine polymer) with Ag doped (CNT/ P3HT@Ag) nanocomposite thin films to be utilised in various practical applications. First, four samples of CNT solution and different ratios of the polymer (P3HT) [0.1, 0.3, 0.5, and 0.7 wt.%] are prepared to form thin layer of P3HT@CNT nanocomposites by dip-coating method of Ag. To investigate the absorption and conductivity properties for use in various practical applications, structure, morphology, optical, and photoluminescence properties of CNT/P3HT @Ag nanocomposite are systematically evaluated in this study. In this regard, the UV/Vis/NIR spectrophotometer in the wavelength range of 350 to 700 nm is used to investigate the absorption, transmission spectrum, extinction coefficient (k) and refractive index of the samples prepared at room temperature. The XRD results indicate a slight increase in the crystallite size of the synthesized (CNT/ P3HT@Ag) nanocomposite compared to CNT/P3HT nanocomposite, which can be attributed to the better dispersion of the P3HT and its favorable wrapping around the carbon nanotube structures. FESEM results show that the Ag nanoparticles are acting as a bridge between the CNT and P3HT, creating a strong bond between the two materials that is strong enough to form thicker tubular structures. An appreciable increase in absorbance intensity (approximately 552 nm) is obtained by adding silver nanoparticles to the CNT/P3HT matrix at 0.5% of P3HT. Additionally, the prepared CNT/P3HT@Ag thin films show greater transmittance – more than 42%, 45%, 49%, and 48% for P3HT concentrations of 1%, 3%, 5%, and 7%, respectively. The preparation of the samples' extinction coefficient (k) and refractive index data show that the inclusion of silver nanoparticles to the CNT/P3HT nanocomposite matrix has a significant improvement over the previous samples (CNT/P3HT composite).
A new class of biologically active nanocomposites and modified polymers based on poly (vinyl alcohol) (PVA) with some organic compounds [II, IV, V and VI] were synthesized using silver nanoparticles (Ag-NPs). All compounds were synthesized using nucleophilic substitution interactions and characterized by FTIR, DSC and TGA. The biological activity of the modified polymers was evaluated against: gram (+) (staphylococcus aureus) and gram (-): (Es cherichia coli bacteria). Antimicrobial films are developed based on modified poly (vinyl alcohol) MPVA and Ag-NPs nanoparticles. The nanocomposites and modified polymers showed better antibacterial activities against Escherichia coli (Gram negative) than against Staphyloc
... Show MoreThe influence of silver doped n-type polycrystalline CdTe film with thickness of 200 nm and rate deposition of 0.3 nm.s -1 prepared under high vacuum using thermal co-evaporation technique on its some structural and electrical properties was reported. The X- ray analysis showed that all samples are polycrystalline and have the cubic zinc blend structure with preferential orientation in the [111] direction. Films doping with impurity percentages (2, 3, and 4) %Ag lead to a significant increase in the carrier concentration, so it is found to change from 23.493 108 cm -3 to 59.297 108 cm -3 for pure and doped CdTe thin films with 4%Ag respectively. But films doping with impurity percentages above lead to a significant decrease in the electrica
... Show MoreIndium doped CdTe polycrystalline films of thickness equals to 300nm were grown on corning glass substrates at temperature equals to 423K by thermal co-evaporation technique. The structural and electrical properties for these films were studied as a function of heat treatment (323,373,423)K. The x-ray analysis showed that all samples are polycrystalline and have the cubic zincblende structure with preferential orientation in the [111] direction, no diffraction peaks corresponding to metallic Cd, Te or other compounds were observed. It was found that the electrical resistivity drops and the carrier concentration increases when the CdTe film doped with 1.5% indium and treated at different annealing temperatures.
Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is
... Show MoreIn this research, the electrical conductivity and Hall effect measurements have been investigated on the CuInTe2 (CIT) thin films prepared by thermal evaporation technique on glass substrate at room temperature as a function of annealing temperature (R.T,473,673)K for different thicknesses (300 and 600) nm. The samples were annealed for one hour. The electrical conductivity analysis results demonstrated that all samples prepared have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), and the electrical conductivity increases with the increase of annealing temperature whereas it showed opposite trend with thickness , where the electrical conductivity would d
... Show MoreThis article includes the preparation of luminescence materials from rare earth (Eu ) ion doping Yttrium Oxide (Y2O3) 70% and SiO2 25% and study the characteristics of phosphors for ultraviolet to visible conversion. The phosphor materials have been synthesized by two steps: Preparing the powder by solid state method using Y2O3, SiO2 and Eu2O3 with doping materials concentration (70%, 25% and 5%) respectively and different calcination temperature (1000, 1200 and 1400 oC).
The second step is to prepare the colloid solution by dispersing the produced powder in a polyvinyl alcohol solution (4%) .
Powde
... Show MoreSilver sulfide and the thin films Ag2Se0.8Te0.2 and Ag2Se0.8S0.2 created by the thermal evaporation process on glass with a thickness of 350 nm were examined for their structural and optical properties. These films were made at a temperature of 300 K. According to the X-ray diffraction investigation, the films are polycrystalline and have an initial orthorhombic phase. Using X-ray diffraction research, the crystallization orientations of Ag2Se and Ag2Se0.8Te0.2 & Ag2Se0.8S0.2 (23.304, 49.91) were discovered (XRD). As (Ag2Se and Ag2Se0.8Te0.2 & Ag2Se0.8S0.2) absorption coefficient fell from (470-774) nm, the optical band gap increased (2.15 & 2 & 2.25eV). For instance, the characteristics of thin films made of Ag2Se0.8Te0.2 and Ag2Se0.8S0.2
... Show MoreThe influence of annealing on quaternary compound Ag0.9Cu0.1InSe2 (ACIS) thin film is considered a striking semiconductor for second-generation solar cells. The film deposited by thermal evaporation with a thickness of about 700 nm at R.T and vacuum annealing at temperatures (373,473) K for 1 hour. It was deposited in a vacuum of 4.5*10-5 Torr on a glass substrate. From XRD and AFM analysis, it is evident that Ag0.9Cu0.1InSe2 films are polycrystalline in nature, having ideal stoichiometric composition. Structural analysis indicated that annealing the films following the deposition resulted in the increasing polycrystalline phase with the preferred orientation along (112) direction. , increasing crystallite size and average grain size
... Show More