The control of an aerial flexible joint robot (FJR) manipulator system with underactuation is a difficult task due to unavoidable factors, including, coupling, underactuation, nonlinearities, unmodeled uncertainties, and unpredictable external disturbances. To mitigate those issues, a new robust fixed-time sliding mode control (FxTSMC) is proposed by using a fixed-time sliding mode observer (FxTSMO) for the trajectory tracking problem of the FJR attached to the drones system. First, the underactuated FJR is comprehensively modeled and converted to a canonical model by employing two state transformations for ease of the control design. Then, based on the availability of the measured states, a cascaded FxTSMO (CFxTSMO) is constructed to estimate the unmeasurable variables and lumped disturbances simultaneously in fixed-time, and to effectively reduce the estimation noise. Finally, the FxTSMC scheme for a high-order underactuated FJR system is designed to guarantee that the system tracking error approaches to zero within a fixed-time that is independent of the initial conditions. The fixed-time stability of the closed-loop system of the FJR dynamics is mathematically proven by the Lyapunov theorem. Simulation investigations and hardware tests are performed to demonstrate the efficiency of the proposed controller scheme. Furthermore, the control technique developed in this research could be implemented to the various underactuated mechanical systems (UMSs), like drones, in a promising way.
The aim of this research is to recognize the tasks undertaken by the headmasters of intermediate schools concerning time- administration, in accordance to the viewpoints of the headmasters of intermediate schools in the Administration of Education of Al-Karkh the Third. The sample of this research consists of (60) headmasters and &n
... Show MoreForecasting is one of the important topics in the analysis of time series, as the importance of forecasting in the economic field has emerged in order to achieve economic growth. Therefore, accurate forecasting of time series is one of the most important challenges that we seek to make the best decision, the aim of the research is to suggest employing hybrid models to predict daily crude oil prices. The hybrid model consists of integrating the linear component, which represents Box Jenkins models, and the non-linear component, which represents one of the methods of artificial intelligence, which is the artificial neural network (ANN), support vector regression (SVR) algorithm and it was shown that the proposed hybrid models in the predicti
... Show MoreThe importance of forecasting has emerged in the economic field in order to achieve economic growth, as forecasting is one of the important topics in the analysis of time series, and accurate forecasting of time series is one of the most important challenges in which we seek to make the best decision. The aim of the research is to suggest the use of hybrid models for forecasting the daily crude oil prices as the hybrid model consists of integrating the linear component, which represents Box Jenkins models and the non-linear component, which represents one of the methods of artificial intelligence, which is long short term memory (LSTM) and the gated recurrent unit (GRU) which represents deep learning models. It was found that the proposed h
... Show MoreThe monthly time series of the Total Suspended Solids (TSS) concentrations in Euphrates River at Nasria was analyzed as a time series. The data used for the analysis was the monthly series during (1977-2000).
The series was tested for nonhomogenity and found to be nonhomogeneous. A significant positive jump was observed after 1988. This nonhomogenity was removed using a method suggested by Yevichevich (7). The homogeneous series was then normalized using Box and Cox (2) transformation. The periodic component of the series was fitted using harmonic analyses, and removed from the series to obtain the dependent stochastic component. This component was then modeled using first order autoregressive model (Markovian chain). The above a
... Show MoreThin films of pure polycarbonate (PC) with anthracene doping PC films for different doping ratios (10, 20, 30, 40, 50 and 60 ml) were prepared by using a casting method. The influence of anthracene doping ratio on photo-fries rearrangement of polycarbonate was systematic investigated. Furthermore, pure PC and anthracene doping PC films were irradiated via UV light at a wavelength (254 nm) for different periods (5, 240, 288, and 360 hrs). The photo-fries rearrangement occurring in pure PC and anthracene doping PC films were monitored using UV and FTIR spectroscopies. The photo-fries rearrangement leads to scission the carbonate linkage and formation phenylsalicylate and dihydroxybenzophenes. The result of the UV spectrum confirms disappea
... Show MoreTuberculosis status as the second leading causes of significant morbidity and mortality from an infectious disease worldwide, after human immunodeficiency virus (HIV). Sample collection was conducted at the Institute of Chest and Respiratory Diseases/Baghdad Medical City in Baghdad. The collection interval was from August to October 2014, 629 suspected TB patients were examined during this period. The results revealed among total 629 specimens, 56 (8.9%) of the specimens were positive by direct examination and 573 (91.1%) negative specimens by smear microscopy. Fifty six DNA samples were extracted from positive ZN smears of sputum specimens and 40 samples from healthy persons (as control) were subjected to molecular diagnosis by real tim
... Show MoreCloth simulation and animation has been the topic of research since the mid-80's in the field of computer graphics. Enforcing incompressible is very important in real time simulation. Although, there are great achievements in this regard, it still suffers from unnecessary time consumption in certain steps that is common in real time applications. This research develops a real-time cloth simulator for a virtual human character (VHC) with wearable clothing. This research achieves success in cloth simulation on the VHC through enhancing the position-based dynamics (PBD) framework by computing a series of positional constraints which implement constant densities. Also, the self-collision and collision wit
... Show MoreThis paper is concerned with finding solutions to free-boundary inverse coefficient problems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial and boundary conditions as well as non-localized integral observations of zeroth and first-order heat momentum. The direct problem is solved for the temperature distribution and the non-localized integral measurements using the Crank–Nicolson finite difference method. The inverse problem is solved by simultaneously finding the temperature distribution, the time-dependent free-boundary function indicating the location of the moving interface, and the time-wise thermal diffusivity or advection velocities. We reformulate the inverse problem as a non-
... Show More